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bstract

We describe a device for assessing the effects of diffusible molecules on electrophysiological recordings from multiple neurons. This device

llows for the infusion of reagents through a cannula located among an array of micro-electrodes. The device can easily be customized to target
pecific neural structures. It is designed to be chronically implanted so that isolated neural units and local field potentials are recorded over the
ourse of several weeks or months. Multivariate statistical and spectral analysis of electrophysiological signals acquired using this system could
uantitatively identify electrical “signatures” of therapeutically useful drugs.
ublished by Elsevier B.V.

; Dru

t
d
a
t
i
d
p

p
t
n
m
r
t

eywords: Drug delivery; Single-unit recording; Local field potential recording

. Introduction

For many decades, animal models have been used for the
dentification of drugs that ameliorate psychiatric, neuropatho-
ogical and neuro-degenerative disorders. The principle means
f assessing efficacy has been the measurement of behavioral
esponses. The development of anti-depressant drugs is an excel-
ent example of the successful application of this methodology
Cryan et al., 2002). Similarly, the development of drugs for the
reatment of epilepsy uses behavioral assays of seizure activity
White, 2002, 2003). However, behavioral assessment is an indi-
ect measurement of drug effects on neural circuitry. Recent data
ave shown that electrophysiological signals are modulated by
nti-depressant drugs (Szabo et al., 1999; Szabo and Blier, 2001)

nd serve as a predictor of drug efficacy (Gallinat et al., 2000;
egerl and Juckel, 2000; Hegerl et al., 2001). In addition, the

ffects of infusing substances into the striatum have been quan-
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ified using electrophysiology to understand their relationship to
isorders such as Parkinson’s disease and schizophrenia (Pierce
nd Rebec, 1995; Stanford et al., 2007). These results suggest
hat systematic and quantitative electrophysiological screen-
ng of pharmaceuticals may prove to be a useful tool in drug
evelopment for a variety of neurological and psychological
athologies.

More recently, due to the rapidly developing field of neural
rosthetics and brain stimulation a need has arisen to main-
ain chronic, i.e. several years, electrophysiological contact with
eurons in the brain. Currently available, chronically implanted
icro-electrode arrays for recording single neural units in neu-

al prosthetic applications lose signals over time. In most cases
hese micro-electrodes fail completely after being implanted in
he brain for several months to a few years. This loss of signal is
hought to be primarily due to the inflammatory response engen-
ered by insertion of the electrodes into the brain and subsequent
elative motion of the electrodes and the brain (Polikov et al.,
005; Szarowski et al., 2003; Turner et al., 1999). Even arrays

hat float with the brain suffer from inflammatory responses that
ould be ameliorated by a pharmacological intervention (House
t al., 2006; Kim et al., 2006; Vetter et al., 2004; Warren et al.,
004).
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Fig. 1. A schematic and picture of the cannula–electrode device are shown.
The schematic shows a side view of the entire device and a top view of the
d
p
t
e

e
c

2

a
d
t
n
a
A
s
c
p
d
c
o
t

22 B. Greger et al. / Journal of Neuro

The device described here offers a simple and effective way to
pproach both drug development and electrode contact longevity
ssues. Although several cannula–eletrode devices have been
esigned for use in both behaving rats (Laird et al., 1979; Rebec
t al., 1993) and monkeys (Kliem and Wichmann, 2004), the
evice presented here possesses several significant advantages.
t its extremely light weight, simple to use, highly configurable,
io-compatible, and can acquire both isolated neural units and
ocal field potentials (LFPs), while delivering drugs through a
annula.

. Materials and methods

.1. Assembly of the cannula–multielectrode array

An apparatus for simultaneously measuring electrophysio-
ogical signals and for infusing reagents in close proximity to
he electrodes is described. The device is comprised of a body,
cannula, and electrodes mounted on the body so that reagents

upplied by the cannula are delivered in proximity of the elec-
rodes. The cannula and electrode can be arbitrarily configured
ith respect to each other in order to allow the device to be

ustomized for optimal implantation in specific brain regions.
The device (Fig. 1) is based upon a commercially available

annula system (Brain Infusion kit II, Alzet). The electrodes are
ade up first, as single long “hat pins”. Holes are drilled at the

esired location into one of the electrode mounting disks sup-
lied with the Alzet kit. The rigid hat pin electrode is placed
hrough the pre-drilled hole with the desired length extending
elow the electrode mounting disk and tacked in place using
small amount of biomedical grade cyanoacrylate glue. The

ength of electrode above the electrode mounting disk is trimmed
o a shaft of approximately 1 mm and stripped of insulation. A
exible 33 gauge insulated copper wire lead is soldered to the
lectrode shaft so that it is at a right angle to the shaft and parallel
o the electrode mounting disk. The other end of the copper lead
ire can then be attached to any convenient electrical connec-

or. The cannula is then slid into the central hole of the electrode
ounting disk, until the desired length of the cannula is protrud-

ng below the disk, and tacked in place using the cyanoacrylate
lue. The gap between the electrode mounting disk and the
ase of the cannula assembly is filled with Loctite M-31CL
edical Device Epoxy to protect wire leads and strengthen the

evice.
The electrodes are manufactured from the biocompatible

aterials, platinum/iridium alloy and Paralene-C insulation.
he units tested utilize 75 �m diameter electrodes sharpened

o 1–2 �m with impedance of ∼0.3 M�. The electrodes and
annula extended 2.5 mm and 2.0 mm below the electrode
ounting disk. Electrode materials and construction can also

e customized according to the needs for insertion into differ-
nt brain structures, e.g. longer electrodes for recording from
eep brain structures. The electrode manufacturing and device

ssembly is carried out by Micro Probe Inc. (Gaithersburg, MD,
SA).
Using the current version of the device, saline is infused using

n osmotic mini-pump (Alzet). This pump uses the force gen-
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isk upon which the electrodes are mounted, and the electrical connector. The
icture displays the complete device next to a scale in centimeters. (A) Coupling
o osmotic pump; (B) electrode; (C) cannula; (D) electrode mounting disk; (E)
lectrical connector.

rated by an osmotic gradient to slowly infuse liquid over the
ourse of several days-to-weeks with no intervention.

.2. Surgical implantation

The surgical implantation of the device is performed using
minimally invasive procedure. An extended borehole proce-

ure is performed. The device is then stereotaxically implanted
hrough the craniotomy. The duramater is pierced by the can-
ula and electrodes, but is otherwise left intact. The device is
nchored to the skull using titanium bone screws (Osteomed,
ddison, TX) and an island of methyl methacrylate forming a

mall head cap. A pocket is formed by blunt dissection of a sub-
utaneous space between the scapulae and the osmotic pump is
laced into this pocket and connected to the cannula–electrode
evice with plastic tubing. The scalp is sutured around the head-
ap, leaving the electrical connector exposed (Fig. 2). A skilled
perator can implant the device in approximately 20 min from
he onset of anesthesia.

It was reported that cyanoacrylate gel (loctite 454) is a more

ffective and easier means of cannula–electrode fixation since
t does not require the use of skull screws for anchoring (Criado
t al., 2003). This would greatly reduce the time required for
mplantation.
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Fig. 2. The left panel shows the insertion of the cannula–multielectrode device using a stereotaxic arm after placement of the osmotic pump sub-cutaneously between
t al con
c ng to
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though an increase in the inflammatory response was detected by
imunohistochemistry, we are able to collect high quality electro-
physiological data. As calculated by spike peak-to-peak divided
by the RMS of the whole recording, the signal to noise ratio of
he scapulae. The right panel shows the completed procedure with the electric
onnector; (C) titanium screws; (D) syringe applying acrylic; (E) tube connecti

.3. Data acquisition and analysis

Since astrocytes often form a barrier around chronically
mplanted electrodes, we use immunohistochemical staining
or the astrocyte marker, glial fibrillary acidic protein (GFAP)
Jankowsky et al., 2000). Briefly, animals are given an anes-
hetic overdose and transcardially perfused with 10% formalin.
rains are then removed and immediately frozen in pre-chilled

sopentane. After embedding in Cryo-M-Bed (Bright, Hunting-
on, UK), 20 �m frozen sagittal sections through the region
here the cannula–electrode device was implanted are collected.
he sections are incubated overnight at 4 ◦C with anti-GFAP
ntibody diluted 1:500 in blocking solution, and then incubated
ith a secondary antibody conjugated to a fluorescence marker

or visualization.
Electrophysiological data can be acquired using standard

mplification, filtering, and analog to digital converting sys-
ems. We recorded isolated neural-units and LFP using two
ignal paths and with different filters applied to each path. We
sed a Dam-80 isolation amplifier and filter (World Precision
nstruments) and a National Instruments DAQ card. Electrical
ignals are amplified with a gain of 10 k and filtered at either
00–10,000 Hz for recording neural units, or 0.1–10,000 Hz
o acquire LFPs. Alternatively, a single broadband neural
ignal could be recorded and differentially digitally filtered
ffline.

. Results

We successfully implanted this device into the frontal or
arietal cortices of five rats, and obtained both electrophysio-
ogical and histological data. Activated astrocytes are a key part
f the inflammatory response to neural injury, and increased
FAP staining is a reliable maker of this response (Eng et al.,
000; Polikov et al., 2005; Szarowski et al., 2003; Turner et

l., 1999). Several weeks post-implantation, we sacrificed the
ats and performed GFAP immunohistochemistry. As expected,
ompared to the non-implanted hemisphere, the tissue around
he electrode exhibits increased GFAP immunostaining (Fig. 3).

F
m
c
a

nector embedded in the acrylic head-cap. (A) Stereotaxic arm; (B) electrical
osmotic pump; (F) cannula–multielectrode device.

e also collected electrophysiological data at two to five time
oints over many weeks post-implantation (Figs. 4 and 5). Even
ig. 3. Immunohistological staining for GFAP shows (A) an increased inflam-
atory response at the site of one of the electrodes in comparison with (B) the

ontralateral hemisphere were no electrodes were placed. Animal was sacrificed
t 30 days post-device implantation.
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ig. 4. Electrophysiological data collected from the cannula–electrode device fr
ver the course of one second for rat 2 and 10 s for rat 3. The middle panels
ollected at 12 days (rat 3) and 7 months (rat 2) post-array implantation.

he recordings displayed in Fig. 4 is 19:1 for rat 2 and 25:1 for rat

. Both the high frequency spike data and the spectral analysis
f the LFP demonstrate electro-physiological activity 2 weeks
ost-implantation.

ig. 5. Spectral analysis of electrophysiological data collected from the
annula–electrode device from one rat (wideband filtered 0.1–10,000 Hz). The
FP exhibits a peak in the power spectrum in the beta and low gamma frequen-
ies (10–50 Hz) typical of recordings from the cerebral cortex. The data was
cquired 15 days post-array implantation. Red lines are equal to one standard
rror.
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o rats (band pass filtered 300–10000 Hz). The top panels show multiple spikes
in on the temporal scale to show two single spike discharges. This data was

. Discussion

The cannula–electrode device described here allows record-
ng of the electrical signal from single neural units, and the

ore global LFP signal, at multiple sites. The recordings of
lectrical activity are made while a reagent is infused in close
roximity to the recording electrodes. Similar devices used by
thers are capable of recording at only a single location (Kliem
nd Wichmann, 2004; Rebec et al., 1993), or only EEG signals
Laird et al., 1979). The present device is highly configurable so
hat electrical recordings and reagent infusion can be targeted to
pecific neural structures.

We recorded electrical activity from, and infused saline into,
he cerebral cortex, which served as a proof of concept for the
unctionality of the device. Further work is, however, needed to
etermine the effects of specific reagents on neural activity using
his device, as well as the ability of this device to record from
ultiple structures, e.g. the basal ganglia and cerebral cortex,

imultaneously. In addition, since cytokines such as interleukin
IL)-1, -4, -8, -10 and tumor necrosis factor-� (TNF-�) can
nhance repair of injured tissue (Spera et al., 1998; Tanuma et
l., 1997; Wang et al., 2002; Wang and Shuaib, 2002), it would
e interesting to use the described cannula–electrode device

o determine if such anti-inflammatory agents can prolong the
seful lifespan of the electrode arrays.

Recent studies have shown that electrophysiological signals
rom isolated neurons are affected by neuroactive drugs such as
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nti-depressants (Szabo et al., 1999; Szabo and Blier, 2001),
nd that evoked potential responses can serve as a marker
f anti-depressant efficacy (Gallinat et al., 2000; Hegerl and
uckel, 2000; Hegerl et al., 2001; Linka et al., 2004, 2005).
uch results suggest that there are likely to be electrophysi-
logical signatures for neuro-active drugs effective against a
ariety of neuro-pathologies. Recordings of neural units and
FP may allow for the detection of such signatures in localized
eural structures. The effects of intra-cerebral infusion of phar-
aceutical agents could then be examined for their effects upon

lectrophysiological signatures.
This device could also serve as a tool for determining phar-

aceutical methods of improving the longevity of chronically
mplanted electrodes used in neural prosthetic applications.

hen coupled with telemetry for wireless transmission of the
eural signals (Harrison et al., 2007; Neihart and Harrison,
005), there is no need for a trans-cutaneous electrical connec-
or, so the skin can be sutured completely closed over the acrylic
ead-cap. In such a configuration the device could provide con-
inuous infusion of reagents and monitoring of signals in the
reely behaving animal without requiring a wired connection
nd a commutator.
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