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Xing, Jing and Richard A. Andersen. Memory activity of LIP characterized with the delayed-double-saccade experiments
neurons for sequential eye movements simulated with neural n@dazzoni et al. 1996b) in which the monkey was trained to

works.J Neurophysio84: 651665, 2000. Many neurons in macaqughemorize two consecutively flashed targets and to plan two
lateral intraparietal cortex (LIP) maintain elevated actmtymducedty ccades to the targets in the order that the targets were
visual or auditory targets during tasks in which monkeys are requirﬁ esented. During the delayed period, many LIP neurons

to withhold one or more planned eye movements. We studied t X f d directi in the directi f the first
mechanisms for such memory activity with neural network modeling. ose preferred directions were in the direction or the nrs

Recurrent connections among simulated LIP neurons were usecbgFc@de fired continuously until the execution of the saccade.
model memory responses of LIP neurons. The connection weighi€se neurons thus held the correct memory for the first
were computed using an optimization procedure to produce desig@ccade regardless of the flash of the second target. Neurons
outputs in memory-saccade tasks. One constraint for the trainiogding for the second saccade started to fire only after the first
process is the “single-purpose” rule, which mimics the fact that oneaccade was executed. The results indicated that memory ac-
LIP neurons hold the memory activity of a saccade, they are insefvities for the majority of LIP neurons encode the next planned
sitive to further stimuli until the motor action is completed. Aftelsaccade. On the other hand, a small percentage of LIP neurons
training, excitatory connections were developed between units Wiy~ qe the memory of target locations instead. The sustained
similar preferred saccade directions, while inhibitory connectlor}%s onses in all kinds of delaved-saccade tasks have a common
were formed between units with dissimilar directions. This “pus%— Fure' neurons begin to er}:code a new saccadic movement
iy

pull” mechanism enables the network to encode the next intended S .
movement and is essential for programming sequential saccadesOTyy after the current motor plan is disengaged. We call this the

simulating double saccades, the push-pull connections locked tféngle-purpose” feature.
on-going activity in the network for the first saccade until the saccade Short-term memory activity has been observed in a number
was made, then a new population of units became active to preparedbrcortical areas (Funahashi et al. 1989; Gnadt and Andersen
the second saccade. The simulated LIP neurons exhibited senst®88; Goldman-Rakic 1995; Kalaska and Grammond 1995;
responses and memory activities similar to those recorded in L{flintana and Fuster 1992). Several computational studies have
neurons. We propose thfat _push-pull recurrent (_:o_nnections might;ﬂ%posed that recurrent connections might be the mechanism
the b§13|c structure mediating the memory activity of area LIP Rr this activity (Cowan 1972; Dehaene and Changeux 1989;
planning sequential eye movements. Fuster 1995; Zipser 1991). The purpose of this report was to
study the mechanisms of saccadic-related memory activities in
area LIP. Especially, we were interested in how the single-
INTRODUCTION purpose feature was related to programming delayed double

The lateral intraparietal cortex (LIP) is involved in program$accades. Based on experimental tasks, we used recurrent
ming saccadic eye movements (Andersen and Gnadt 1988ural networks to simulate the memory features of LIP neu-
Lynch et al. 1977). Many LIP neurons exhibit sustained réons We flr_st studied the mechanisms of memory saccades and
sponses to remembered visual or auditory targets (Mazzont2§" €xamined an extended model for planning double-sac-
al. 1996a). During delayed-saccade tasks in which the mon es. Prehmmaw results of this report have been presented in
withheld a saccade to a remembered target for a short periodgptract form (Xing et al. 1995).
time, the response of LIP neurons triggered by the target was
sustained until the saccade was initiated (Andersen et mETHODS
1990a,b; Gnadt and Andersen 1988). Moreover, neurons coulc}h . . .

e model is a three-layered neural network, with a similar struc-

maintain the memory for the saccade even if the monkey Wf%?e to that of Zipser and Andersen model (1988). The diagram of this

preser_lted with new stimuli during the withholding per'Od%)gel is shown in Fig. 1. The model was not designed to resemble the
Negatlv_ely correlated memory responses have also been ghs plex anatomy of area LIP. It is the typical classic neural network
served in LIP, and such responses occurred when the reme#igt can be trained to carry out the required sensorimotor transforma-
bered saccade was opposite the neuron’s preferred saccaeis. The input layer, like area LIP, has access to visual and auditory
direction (Barash et al. 1991a,b). Memory activity was furthesrget locations as well as eye position in the orbit. The output layer
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- coordinates, ar_wd A for the_ locations of auditory targets in head-
i 8 "Superior centered coordinates. For simple saccades,#W for visual targets
Motor Error colliculus” and ME= A — E for auditory targets. For double saccades, we use
Output EO to represent the initial eye position, V1 for the location of the first
8 visual target in retinal coordinates, and Al for the location of the first
Rec‘”ﬁ“j net auditory target in head-centered coordinates. E1 represents the eye
position after the first saccade. V2 and A2 indicate the second visual
_ B 39 LIP* and auditory targets, respectively. The desired ME output for the first
Hidden Layer saccade is ME= V1 for visual targets or ME= A1 — EO for auditory
targets. The ME for the second saccade is MBA2 — E1 or ME=
V2 + EO — E1.
e L " Training process
|V'S”f" 8 Allxgggtry 8 |Eye Position| 8 We use an algorithm “backpropagation-through-time” to train the
npu 4 network. This algorithm gradually optimizes connection weights to

8 8 produce the desired output in a recurrent neural network (Munro et al.
/I\ /I\ k 1994; Werbos 1990; Williams and Zipser 1995). We use this algo-
l ! rithm simply to train the network to perform the required sensorimotor
Fic. 1. The diagram of the recurrent network model for memory saccadedransformations with no intention to claim that the algorithm is similar
to the learning mechanisms in the brain.

is a topographic map of eye motor errors. The middle layer, or theThe backpropagation algorithm uses supervised learning. It first
hidden layer, is a recurrent network with every unit receiving activcomputes an error signal, which is the difference of the desired output
ties from all other hidden units. Every unit in the input layer igthe teacher signal) and the actual output. This error signal is then used
connected to each of the hidden units, which are in turn connectedaaupdate connection weights. The amount of weight change depends
all the output units. The weights of connections vary betweérand on the error signal, the activities of the two connected units, and an
+1. They are initially set to small random values betwedhl and arbitrary learning rate. In our implementation of the algorithm, the
0.1. The weights are adjusted to encode the motor errors of visualdesired activityA,,,, for each output unitk is determined by the
auditory targets at the output map. expected ME of a saccadic target. The actual oufpuof an output

The input layer consists of a visual map in retinal coordinates, amit is computed for a given target location, eye position and the initial
auditory map in head-centered coordinates, and eye-position uniteights. The error signal, for an output unik is
The visual map uses 8 8 units to model a-40° to 40° retinal space.
Each of the units has a Gaussian receptive field (RF) witte avitith 3= Aep— Ao
of 15°. The centers of the RFs were equally spaced over @8rid o connection weightw,,, from a hidden unit to an output unit is
with 10° spacing. These units encode target locations with thejnqotaq according to
activation values between 0 and 1. The auditory input is modele
using an auditory map of an8 8 array of units, similar to the visual AWio = N#A#AG (1 — Ag)# 8y
one. The only difference between the two input maps is that the
auditory units encode target locations in head-centered coordinatdiereA, is the activity of the hidden unit. The learning ratén our
and the visual units encode target locations in eye-centered coofdiulations is 0.05.
nates. Eye positions is coded by four sets of eight units representingt connection weight\, from an input unit to a hidden unit is
horizontal and vertical eye coordinates with positive and negativ@dated according to
slopes. The activation of the units, with various intercepts and slopes,
is thus an increasing function of eye positions. AWjy = nsApAp(L = A ) (8 Who,)

The middle layer, also called the hidden layer, typically has 30 units K

in the simulations presented in this report. Each hidden unit recei\(ﬁﬁere _is the activity of the input unit and. is the error sianal of
inputs from all three input channels. In addition, each hidden unif, outﬁ‘ut unit. y P K g

receives recurrent projections from all other hidden units. The acti- yecyrrent connection weighi,, from a hidden unit to another
vation of a hidden unit is calculated by first summing all inputs angiqqen unitj is updated according to

then calculating the output as a sigmoidal function of the total input.
At a given simulated time step, the activation of a hidden unit can be AW, = nsA (t = 1)xA, (H#(1 — Ahl(t))*z (8¢+Wha,)
expressed as the following: output activatien1/[1 + exp(—net)]
where net= sum of weighted inputs- bias.

The inputs here include the activities of the visual, auditory, antdhereA, (t — 1) is the activity of the hidden unitat the previous time
eye-position units at the current time step and the activities of othgep andAhJ(t) is the activity of the hidden unijtat the present time
hidden units at the previous time step. The sigmoid function is chosgiep.
as the activation function because it resembles the operation pert a recurrent network, the output of the network accounts for both
formed by actual neurons that sum inputs, have a threshold, dhe current inputs and the activities at earlier times. We run the
saturate at high levels of activity. In the middle region of its dynamigetwork in 13 discrete time steps for each training cycle. To compare
range, the sigmoid approximates a linear function. with experimental recordings, one time step can be viewed as a

The output layer is an eye-centered map encoding eye motor errdugation of 100 ms. The time lag of the recurrent connection is one
(ME) of saccades. An & 8 array of output units is used to representime step. The input of a visual or auditory target location lasts for one
MEs topographically. Each of the units covers a 10° space of MEme step while an eye-position signal sustains until a saccade is made.
with a Gaussian #/width of 15°. The activation of the output units, The teacher signal, which is the expected ME in the output layer,
like the hidden units, is a sigmoidal function of the sum of theppears several steps after the onset of a target simulation and lasts for
weighted inputs from the hidden units. We use E to represent thee time step. This signal mimics the command to make a saccade.
initial eye position, V for the locations of visual targets in retinallhe weights of the feedforward connections and recurrent connections

k
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A pairs of target location and eye position. The performance of
Target Saccade the trained network was evaluated by comparing the expected
- X ME for a given target location and eye position with the
produced ME at the output layer. We tested 100 random input
|«———— Delay period ———— _ pairs of eye position and target location for the trained net-
work. The standard deviation of the actual ME outputs from
B the expected MEs was 2.62°. Figu® g&hows one example of

io ] ® Target the model output. For simplification, only eight units (which
include the one with the maximum response) along one dimen-

20" 1 sion (1-D) of the two-dimensional (2-D) output map are
. ] shown. The vertical axis is the 1-D ME and the horizontal axis
indicates time steps. The gray level of squares is proportional
-20° 1 to the responses of the output units. The horizontal bar indi-

cates the gravity center of the responses. “T” indicates the
expected ME of the target. Figuré8Zhows that the model
12 3 4 5 6 7 8 9 produces the correct output and the activity sustains throughout
the delay period.
C 1 ® Target One important feature of LIP neurons is that the memory

40" 1 * * Stimulus activity sustains even when new stimuli are presented during
20° - the memory period. A stimulus that appears at a different
location from the target during the delay period is called an

. irrelevant stimulus. The memory activity of LIP neurons is
20°] resistant to irrelevant stimuli (Mazzoni et al. 1996b). However,
the preceding trained network failed to produce this feature.

When a new stimulus was presented during the delay period,

Eye position

Motor error
o

Motor error
o

1 2 3 45 6 7 8 9 the output pattern of the network shifted away from the ex-
pected ME, as shown in Fig2 The final motor command for
Time Step the saccade was thus incorrect. Correspondingly, the memory

FIG. 2. The training pattern and the performance of the simple memor -Ct“{'ty of h'dder_‘ units was disturbed with the presentatlon of
saccade modeh: the typical training pattern. Eye movement is indicated withN€ irrelevant stimulus. Therefore a|thPU9h_th|S network can
the lines and the short bar indicates the timing of the taethe 1-dimen- perform simple memory saccades, it is insufficient to model the
sional (1-D) ME outputy axis) through timex axis). Each square indicates 1 memory properties of LIP neurons.

output unit, with the gray level of the square representing the responsivenes ; il g
The short bars indicate the averaged response center of the 1-D output. ng—he network also failed to produce the mhlbltory activity

black dot indicates the time of the presentatigrakis) and the expected ME OPServed in many LIP neurons. By examining th? weights of
of the targetC: the 1-D output when a stimulus is presented during the deldjie recurrent connections, we found that connections between
period. The output is shifted by the stimulus. units with similar preferred saccade directions (PD) became
) _ ~ stronger with the progress of training. Strong excitatory con-
are updated at the time of this saccade command. Note that we did R&ttions mostly occurred between units with similar PD at the
simulate the shut-off of the neuronal activity after a saccade is m fd of the training. The responses to targets were sustained
(i.e., the postsaccadic suppression). Therefore the recurrent activit ?ough the circulation of the activity using these connections.

the network may sustain indefinitely unless it is turned off by oth the other hand. inhibit fi v ob d
mechanisms, as detailed later in the extended double-saccade mdd8|N€ Other hand, inhibitory connections were rarely observe

Since different training patterns are employed for models of singl¥l the network.

and dout_)le-m_emory saccades, details about the training patterns yyil,ory.SACCADE MODEL TRAINED WITH THE SINGLE-PURPOSE
be described in each section as needed. FEATURE. Training and network performancaVe retrained

the same model in Fig. 1 by applying the single-purpose
RESULTS feature to the training procedure as a constraint. Figuke 3
shows a typical training pattern. The target was flashed for one
Model of memory saccades time step as before. In addition to the target, an irrelevant
MODEL TRAINED WITH SINGLE MEMORY SACCADES. We first stimulus was presented at a random location during the delay
trained the model to perform single memory saccades. Twenperiod. The irrelevant stimulus was a dot stimulus lasting for
five target locations across the input space and 25 eye positiong time step. The network was required to yield the correct
were chosen as training samples. For each training cycleM& of the saccade to the target. Thus the activation of the
visual or an auditory target at a chosen location was preseniedlevant stimulus was to be ignored. At the time of the
at the first time step. A saccadic target was simulated as a gatcade command, the difference between the expected ME
stimulus with the amplitude of 1. The saccade was madead the actual output was computed for each output unit; the
randomly between the fifth to ninth time steps. The model wagights of connections were adjusted accordingly.
trained to encode the ME of a saccade at the time step when thin the beginning of training, the output of the network was
saccade was made. The paradigm is illustrated in AgARter  shifted by the presentation of the irrelevant stimulus. Gradu-
approximately 3,000 training cycles, the network learned #ily, the effect of the irrelevant stimulus became less. Eventu-
produce and memorize saccadic MEs correctly to any inpaity, after 4,000-5,000 training cycles, the network learned to
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A and the responses die away soon after the target disappears.
Yrolevant Detailed examination of these units reveals that the weights of
Target = Saccade inward recurrent connections to them are very weak. These
Eye posm; /_ units are merely the result of the random process of training.

The majority of the hidden units exhibit different types of
response patterns, depending on the tasks. A unit may have
o Target sensory responses and memory activity to a saccadic target
. Irrelevant presented in its RF as shown in FigA.4Alternatively, if the
stimulus stimulus in the RF is an irrelevant stimulus, the unit may only
* show a weak, brief responses or no response at all (By. 4
More importantly, the irrelevant stimulus does not shift the
firing activity away from the response evoked by the first
stimulus. When the target is in a unit’'s preferred direction but
does not fall in the center of the RF, the unit has a weak
1 2 3 456 7 8 9 response to the flash of the target but its elevated activity is
Time step sustained during the delay period. This memory activity is due
to the excitatory inputs from other units with similar PDs (as

FIG. 3. The training pattern and the performance of the model with the. . . -
9P P will be explained in the next section). These response patterns

memory-saccade featurA: the training pattern. The timing of the target and h .
the irrelevant stimulus are indicated with short bars and the eye movementsafé exactly what were found in LIP neurons in memory-
indicated with linesB: the 1-D output of the model after training, illustratedsaccade experiments (Mazzoni et al. 1996b).

in the same way as in Fig. 2. *, the presentation of the irrelevant stimulus. Strycture of the recurrent networRo understand the un-
Compared to Fig. @, the stimulus did not shift the output center. derlying mechanisms of saccadic memory activity, we exam-

hold the correct ME memory of the first target at the end of tH@ed the connectivity developed in the recurrent network. Fig-
e BA shows the weights of recurrent connections between the

d?'ay .period, irrespective of the _presentgtion of the irreleYahldden units. The weights are plotted against the difference of
stimuli at any location and any time during the delay perlo% '

. referred directions of the connected units with each dot for
Figure B shows an example of such a response. The stand

deviati fth | ¢ h d connection. Compared to the recurrent connectivity in the
eviation of the actual output from the expected output |3q4e| trained without the single-purpose constraint, strong

2.91°. o . . . _ inhibitory connections were developed between the units with
Through training the hidden units acquired localized RFs fgfissimilar PDs in addition to the excitatory connections be-
both visual and auditory inputs. The visual and auditory réyeen the units with similar PDs. The distribution of all con-
sponses to targets were modulated by eye position. The mapeétion weights is relatively continuous, varying betweeh
this modulation over different eye positions is called a “gaignd +1. Figure B summarizes the data in FigA5The units
field” (Zipser and Andersen 1988). Most hidden units wergith similar PDs have the strongest excitatory connections, and
also tuned to saccadic movement directions. These propertigs excitatory connections become weaker as the PD difference
are similar to those observed in LIP neurons and to thogfreases. With the PDs further apart, the connections between
obtained from a similar model without recurrent connectionfie units become inhibitory. The strongest inhibitory connec-
(Xing et al. 1994). In this report, we are more interested in thRyns occur to units with opposite PDs.

| «<— Delay period ——|

09)

40"

Motor error

sustained response patterns of the hidden units. We therefore propose a recurrent model for memory activ-
Figure 4 shows two typical response patterns of a hidden

unit. Theleft panelindicates the RF of the unit as well as the Irrelevant

locations of the targets and irrelevant stimuli. Tight panel Jarget stmulus - Saccade

shows the responses through 13 time steps. The timing of A ‘ * ‘

inputs and the expected saccades is indicated at the top of the
figure. In Fig. 4, the target falls onto the unit's RF, and the s
saccade is in the unit’s preferred direction. The unitrespondsto  +
the target and activity sustains throughout the delay period.
Notice that the brief presentation of the irrelevant stimulus
during the delay period does not affect the memory activity. In B
Fig. 4B, the target is opposite to the preferred saccadic direc-
tion, while the irrelevant stimulus falls in the center of the RF..<_+ L Brief response

The unit does not respond to the target. It has a brief response

to the irrelevant stimulus, but the response is immediately 1 3 5 7 o

suppressed. Some units do not respond to the irrelevant stimuli Time step

atall. _Th's k'nd of (?ICtIVIty is often obs.erved n dOUbIe'SaccadeFle. 4. Typical response patterns of a hidden unit in the memory-saccade
experiments in which neurons have little or no response to thigdel. Left spatial arrangement of the tasks. The receptive field (RF) of the
brief flash of the second target during the delay period.  unitis indicated with the dashed area. The star symbol indicates the irrelevant

Through the use of various test patterns, we find that thestinulus (IS), and the target (T) is represented with the black dot. The arrow
; h ine shows the saccadRight each graph shows the response of the hidden

are dlﬁere.m types of hidden units. A small portion of t .%nitthrough time. The height of the bars corresponds to the responsivaness.
hidden units only have sensory responses but no sustaifOsensory and memory activity to a target in the unit's BFthe brief
activity during the delay period—the units respond to a targeésponse to an irrelevant stimulus in the RF.

; : : Sensory
+
_ Memory
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A PHYSIOLOGICAL RESULTS TO BE MODELED. The delayed dou-

ble-saccade tasks by Mazzoni et al. (1996b) were designed to

22 ] . ., : . N test whether LIP neurons encoded sensory locations or motor
'§ . M, e el plans of saccades in sequential eye movements. The monkeys

82 | . . RN were required to memorize two targets briefly flashed in suc-

£ ‘M 2ot S cession during a delay period and to make a sequence of two

2 ik Lo saccades to the two targets after the fixation light went off. The

memory activities during the delay period (before the 1st

0 50 100 150 saccade) and during the intersaccadic interval (after the 1st
Difference of preferred iections (degree) saccade and before the 2nd saccade) were examined. Extracel-

lular recordings showed that during the delay period, many
"Push-pull” mechanism o neurons whose movement fields were in the direction of the
S baton first saccade fired continuously until the first saccade was
—> Preferred direction made, whereas neurons coding for the direction of the second
saccade started to fire only after the first saccade was per-
formed. Figure 6 shows the responses of a typical LIP neuron
in different double-saccade tasks. Tia# panelshows the two
saccades made toward the two remembered targets. The dashed
Fic. 5. The weights of recurrent connectiors. the weight of recurrent curve indicates the neuron’s RF. This neuron preferred sac-
connections Y axis) are plotted against the difference of the preferred direcades in the down-left direction. The saccadic targets are
tions of the 2 connected hidden units. Each dot is for 1 connecBiothe  indicated with black dots and labeled as T1 and T2. Responses
ﬁ;lzgsrar‘g”pgQZﬁtpr‘fCZ'ﬁg'r'n”l%maeTf&s?haded circles represent hidden units gf & neyron are shown in thight panel The delay period is
. o _ _labeled as M1. The horizontal and vertical eye positions are
ity: lateral excitation pulls responses together from units Wiflotted under the responses. The first deflection in these eye
similar PDs to maintain the activity over a period of timeyraces corresponds to the first saccade and the second deflection
while lateral inhibition pushes away any response in units Witlbrresponds to the second saccade. In FAgb®th targets fall
dissimilar PDs so that their responses do not disturb the ongethe RF, and only the first saccade is in the neuron’s PD. The
ing memory activity. Such a push-pull structure could be theuron fires during the delay period. The sustained activity
basic architecture for the single-purpose feature of memagyes off after the first saccade is made. In FiB, e first
activity in area LIP. Recurrent excitation may invoke a set @4rget is outside the RF and the second target falls in the RF.
neurons with similar PDs to maintain the memory activityThe second saccade is in the neuron’s PD. The neuron has a
Once this neuron population is engaged, those neurons Wilief response following the flash of the second target, and this
dissimilar PDs are suppressed due to the inhibition. Thus whggtivity does not sustain during the delay period. After the first
a new stimulus is presented at a different location, the neurafigcade is completed, the neuron begins to fire and the activity
tuned to that direction are inhibited. Even if some of thesqstains until the monkey makes the second saccade. Thus the
neurons may respond weakly, as shown in Figj.the activity activity is related to the second saccade. In Fig, 6o targets
is immediately suppressed by the existing cooperative activill in RF, but the second saccade is in the neuron’s PD. The
of the first population. Therefore the push-pull structure cafeuron has no response to the flash of either target. However,
lock the ongoing activity to prevent it from being disturbedi fires during the intersaccadic interval and thus codes for the
Only after the remembered saccade is made and the coopggxond saccade. Therefore this neuron encodes a preferred
tive activity is turned off, can the network perform a new taskmpending movement regardless of target locations. As shown
Notice that the inhibition is a training result of ignoringin F|g 6C, the activity does not even depend on sensory
irrelevant stimuli, i.e., a result of the single-purpose featurgtimulations. Seventy-seven percent of LIP neurons recorded
The weights of feedforward and recurrent connections wegacode the impending saccade. It is concluded that the memory
adjusted such that the hidden unit activity evoked by thgtivity of the majority of LIP neurons encodes the next
one-time-step presentation of the dot stimulus was not strop@nned saccade. On the other hand, 16% of neurons encode
enough to override the inhibition. Since the ability of thgarget locations instead. These neurons begin to fire after the
network to resist irrelevant stimuli depends on the trainingash of the second target, which falls in their RFs, and the
stimuli used, a strong sustained irrelevant stimulus or simultgetivity lasts through the delay period and the intersaccadic
neously presented multiple stimuli could override the recurrefterval. These neurons may participate in programming sub-
activity of the network trained here. Similarly, a strong sussequent saccades because information about the second target
tained inhibitory input to the hidden layer could override thAeeds to be held until the first saccade is performed. The
recurrent activity maintained by excitatory recurrent Connefemaining neurons, approxima’[e|y 7%, were difficult to clas-
tions. This allows the network to be reset qU|Ck|y S|fy into one or the other of the two Categories_

From a large amount of experimental data, we generalized
three basic features about LIP neurons in double-saccade tasks.
LIP neurons participate in planning sequential eye movEeature 1 Single purpose—The sustained activity for the first
ments. This has been typically studied with double-saccasi@ccade is only minimally transiently affected by the brief

experiments. In this section, we first summarize the neurophysesentation of the second targéteature 2 Postsaccadic
iological data and then extend the memory-saccade modelstgppression—The sustained activity is sharply turned off after
make a sequence of two saccades. the saccade is performed. This turning off is also seen in simple

Model of double saccades
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population of units also receive visual, auditory and eye-
position inputs. Its output projects to the primary hidden net
(RN-I). Every RN-II unit projects to all RN-I units. Like RN-I
units, RN-II units are fully interconnected. The postsaccadic
suppression is also built into the model. It artificially resets the
activity of RN-I units to the initial state after the first saccade
is made. The push-pull structure of the RN-I network is capa-
ble of carrying outfeature 1,the single-purpose feature; post-
saccadic suppression servisature 2,i.e., turning off the
memory activity in RN-I after a saccade is made; and the RN-II
network serves the memory buffer figature 3.This model is
expected to produce the following response patterns: RN-I
units encode the first saccade, and the activity is sustained
while a brief presentation of the second target does not affect
the on-going activity in RN-I due to the push-pull mechanism;
information about the second target and the initial eye position
is maintained in RN-II; the postsaccadic suppression turns off
RN-I activity after the first saccade is made; and after the first
saccade is performed, RN-I combines the new eye-position
information with the input from RN-II and produces a new ME
for the second saccade.

The RN-II network acts as a memory buffer for the second
target. In a delayed double-saccade task, different populations
of neurons must be involved to hold the information about each
target and thus a memory buffer is necessary. This memory
buffer could correspond to the 16% of LIP neurons coding for
target locations (Mazzoni et al. 1996), or it may come from
some brain areas outside area LIP, such as area 7a or the frontal
lobe. We do not specify which of the two possibilities corre-
spond to the RN-II network since there is currently not suffi-
cient experimental evidence to make this determination. The
RN-1I network loads the target that is retained in a memory
buffer, i.e., the input lines of the RN-Il network are open only
after the onset of the second target.

An important control structure of the model is the postsac-
cadic suppression, which turns off the activity of RN-I units
after the saccade is made. Such a turning-off action is neces-
sary for neurons to encode a new saccade. During single-
memory-saccade and double-saccade tasks, sharp turning-off
of LIP neuronal activity is often observed right before or after
the saccade. One possible source of such suppression is the

motor intention. The responses of a typical cell encoding impending ME in€fferency copy of the eye movement command. However, in a

double-saccade tasks. Each panel has a plot that includestdpoimbottom

change-plan experiment (Bracewell et al. 1996), where the

the spike rasters for each trial, the time histogram of the firing rate, and the

horizontal and vertical eye positions (30°/division) (abscissa: 100 ms/division).
The vertical dotted lines and the thick horizontal linedoweach panel show

the onset and offset of the visual stimuli. The deflections in the eye traces
correspond to the first and the second saccades in sequence. The diagrams to
theleft of each panel show the spatial arrangement of the 1st and 2nd target (T1
and T2, respectively), the 1st and 2nd saccades (arrows), and the neuron’s RF.
This figure is modified from Mazzoni et al. (1996b).

memory saccaded-eature 3 Memory buffer—A separate
population of neurons hold information about the second tar-
get. This population should project to those LIP neurons which,
in turn, project to other motor/premotor areas.

MODEL. Based on the preceding experimental observations,
we extended the memory-saccade model to simulate double-
saccade tasks. Figure 7 is a diagram of the extended model.

Motor Error] >
Post-saccadic
O“t?”t suppressio

Recurrent Net-ll

Recurrent Net-1

nun

| [ S

Visual Auditory Eye position
Input Input

Besides the recurrent network in the original memory-saccad

IG. 7. The diagram of the extended model for double saccades. The

model, called recurrent net | (RN-I) here, the extended modgeurrent net-Il (RN-II) and the postsaccadic suppression are added to the
has an additional recurrent net in the hidden layer (RN-II). Thisnple memory-saccade model shown in Fig. 1.
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monkey was required to prepare a saccade to a new target A
during the fixation period, the memory activity of LIP neurons -
for the previous planned saccade was turned off sharply even T1 St
though no eye movement was made. Thus eye movement — *
i ; i ] T2
information could not be the only source for the suppression. A 1
i i i - Eye | — i
high-level signal that changes the memorized saccadic plan Position, | o
may terminate the activity of the neurons. The suppression thus ! Delay period ! ‘”t;ftséarsgf‘dlc !
could be due to strong inhibitory inputs from other high-order L 1 A :
1
] !

cortical areas, such as the frontal eye field (FEF). Many neu-

rons in the FEF exhibit postsaccadic activities (Bruce and

Goldberg 1985; Goldberg and Bruce 1990). Given that the FEF B
has feedback connections to area LIP, it is possible that those

FEF neurons send a damping signal to LIP to provide the T 12 31 S2
postsaccadic suppression. The generation of such inhibitory 40°

inputs is beyond the scope of the model. We mimicked this 5 .

postsaccadic suppression by simply resetting the network arti- 5 20 ®

ficially. _—

TRAINING PROCEDURE. In each training cycle, two targets (T1 § -20°

and T2), either visual or auditory, are randomly selected for

position and modality and presented to the network for a é 1'1 1'3

duration of one time step. With EO representing the initial eye T3 5 7
position, V1 for the location of the first visual target in retinal Time step
coordinates, and Al .for the Iocatlon of the aUdltory target InFI(ﬁ‘. 8. Training pattern and the performance of the double-saccade model.
head-centered coordinates, the desired ME output at the end\.Gke training pattern includes 2 targets, T1 and T2, and 2 saccades, S1 and
the delay period is ME= V1 for visual targets or ME= A1 —  S2. The time lag between S1 and S2 is the intersaccadic int@vtie 1-D

EO for auditory targets. After the first saccade is made, the eyetor error output of the model illustrated in the same way as in Fig. 2. The
is moved to the new position E1. The desired output at the tirff@ing of T1 and T2 and S1 and S2 are indicated onttpe

of the second saccade is MEV2 + EO — E1 or ME= A2 — ;0 aligned. The RFs were very large; some of them even

tE1. |—:ere V2 and A2 indicate the second visual and aUditOB\écupied up to half of the input space. The responses of the
argets. __hidden units to visual or auditory targets were gain modulated

Figure & illustrates the training protocol. Target T1 i o - A :
L - ; initial eye position. Later we will discuss how these gain
flashed at the beginning of a training cycle and T2 is flashedf lds are essential for coordinate transformations.

a randomly selected later time step. The two saccade COMAS in the single-memory-saccade model, most hidden units

mands, labeled as Sl and S.Z’ are made for t'he. two targgisne double-saccade model exhibit sustained memory activity
separated by two time steps in the intersaccadic interval. Cvisual and auditory targets. Here we show the typical re-

length Otf Thlic;gtetrvglog arb;;raryl, S”t?ptl\yv mlmtlckmg the aE{).'s onse patterns of the hidden units to visual targets to make
proximately 100- to 2U0-ms ume lag between two CONSeCUllyg ot comparisons with the experimental data in Fig. 6. Figure

salcclzz%dles tln dc:}ljkt)rie—?acca?éigfﬁs. The initial eﬁg-po.smor; %?ﬂustrates five response patterns of two typical hidden units.
na asts unti the ime ot 5., the new eye-position sigha igure 9, A—C, shows the responses of a unit in the RN-I

starts after S1. The RN-I network is open all the time except fQei ok Fig. 9,D andE, shows the responses of a unit in the

the reset at the time of S1. The RN-Il network begins to OPEN-1I network. Theleft panelshows the spatial arrangements

only after the onset of target T2. The error signals for leaming yhe saccades. The RFs of the units are outlined with the
are computed at the time of S1 and S2. The connection Weigji§ e areas. The initial eye positions are indicated with
ar('a:.adjusgd ?ccordmgly. e of th del perf symbols. The two targets are labeled as T1 and T2, and the two
Igure & shows an example of the model performance @b, 4es are labeled as S1 and S2. The responses of the units
the output Iayer after training. 'Afte.r the training is Comp'ete re shown on theght panelwith the height of the vertical bars
the connections are fixed. Like in the training period, thg ,horional to the responsiveness. The targets are flashed
network is run for 13 time steps for a given combination of thgy e nsially on the first and fourth steps and the model pro-
two target locations and the initial eye position. The M os the first saccade (S1) at the 10th time step and the second

outputs of the network are plotted along the vertical axis. T ; indicatiel
two black dots indicate the expected MEs of the two saccad%ei?-ﬁzdgO(UStﬁza?;a?ceaégtgrtr'g%::ﬁghgsiInn?:'icg Agcmg?é) .the

The output of the model encodes the first saccadic ME befQig o o5 those in Fig. 8-C. In Fig. 9, S1 is in the unit's

the first saccade is made, and then encodes the second sacgq rred direction. The unit respéndé to the target and the
Thus the model produced two saccade commands in SEqUEACR i sustains until the postsaccadic suppression turns it off
The push-pull structure assures that the model carries Qykpe time of S1. In Fig. B, only T2 falls in the RF and S2 is
multiple saccade plans sequentially. in the unit's preferred direction. The unit has a brief response
RESPONSES OF THE HIDDEN UNITS. After training, most hidden when T2 is presented, and this activity is suppressed by other
units in RN-I and RN-II developed localized RFs for bothhidden units that encode S1 during the delay period. This unit
visual and auditory inputs. When eye position was centeredhirgins to fire after S1. In Fig.®® no targets fall in the RF, but
the orbit, the visual and auditory RFs of a given unit wer82 is in the unit’s preferred direction. The unit still fires during
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Target 1 Target 2 Saccade 1 Saccade 2

@ *Y Y vy

FiIc. 9. Typical responses of 2 hidden units in
the double-saccade model. The timing of targets
and saccades are shown on tbp of the figure.
Left the spatial arrangements, with the dashed
area for the RFs, T1 and T2 for the 2 targets, and
S1, S2 for the 2 saccadeRight the response
patterns.A-C. responses of a RN-l unit in 3
double-saccade task3.andE: the responses of a
RN-II unit in 2 tasks.

8

Time step

the intersaccadic interval, coding for S2. Like the neuron We first examined the hidden units in the RN-Il network.
shown in Fig. 6, the sustained responses of this model unit coblee RF of a unit was first measured at the central eye
the upcoming saccade. The result of Fig: & intriguing in  position. Next, for 8X 8 eye positions, the responses to a
that a unit can be activated without a target in its RF. target presented in the RF were measured. Results showed
Notice that the neuronal responses shown in Fig. 6 exhibitgtht the responses of most hidden units were modulated by
complex dynamic patterns. For example, the activity in FAJ. Geye position. The 2-D plot of responses against different eye
had a dip between the offset of the second target and the onsgiitions is called gain field (GF) as reported by Andersen
of the saccade. This dip might correspond either to the secastch|. (1985). The GFs of RN-II units monotonically increase
target or to the saccade onset. The activities in Fi@ &1dC, in particular directions. Figure 1) and B, shows the RF
also had similar dips. The model responses in FiA-&C,did  and the GF of a typical unit. In Fig. 2 the gray levels of
not capture these dynamic response patterns. The model Uglis small squares correspond to the responses of the unit to
updated their activities at a time step of 100 ms while neurofige target presented at different locations of the input map
updated their activities at an order of 1 ms. To capture thoggile the eye position is pointed at the central fixation. In
neuronal dynamics requires a network with realistic modglg. 108, the sizes of the squares indicate the responses to
neurons and stochastic processing. _ __atarget presented in the center of the RF for different eye
Figure 9,D andE, shows the responses of a typical unit ifhositions. Notice that the unit's RF and its GF are in the
the RN-II network. The unit begins to respond after the onsghme direction. This is typical for the majority of the RN-II
of T2 in its RF, and the activity is sustained. The locations @fnits. Figure 1@ shows the direction differences of the GF
target T2 in Fig. 9D andE, are the same, but the initial eyeand the RF for every RN-II unit. Most units have an aligned
positions in the two graphs are different. The unit responds fg=-GE structure. The two units whose RFE-GF direction
T2 in both cases. However, the responses are strongly mogifferences are close to 180° have weak responses. There-
lated by the eye position. The responsiveness in Figis9 fore they have little contribution to the network. A group of
weaker than that in Fig.[d as the eye position moves in theynits with the aligned RF-GF structure is well suited for the
opposite direction to the unit's RF from Fig. B, to E. The transformation from eye- to head-centered coordinates since
information about the eye position is thus combined with th@jis transformation requires addition of eye position and
target’s retinal location through this modulation. Therefore th@tinal position. Previously we have demonstrated that a
information about head-centered representation is implicithppulation of units with aligned RF-GF contains an implicit
carried in the activity of a set of RN-II units. representation of target locations in head-centered coordi-
COORDINATE TRANSFORMATIONS. One traditional question nates (Xing et al. 1994; Zipser and Andersen 1988).
about double-saccade tasks is how the motor vector for theNext we examined RFs and GFs of the units in the RN-I
second saccade is computed, given that eye position at the timeéwork. After training, most RN-I units developed RFs for
of the second saccade is different from the time when the viswégual and auditory inputs and monotonic GFs for eye position.
target was flashed. How are the spatial transformations fégure 11,A andB, shows the RF and GF of a typical RN-I
quired for double-saccades carried out? To answer this quesit. Unlike the one in Fig. 10, this RF and GF of the unit are
tion, we examined how eye-position information is utilized bin opposite directions. Figure Clshows the RF-GF direction
the hidden units in the model. differences for all the RN-1 units. The result indicates that most
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B cade in a double-saccade task. This resulted in one of the
F..lll model functions: ME= V1.
H

1T The results of Figs. 10 and 11 show that the majority of RN-I
1T TTTY units have an opposite RF-GF structure and the majority of
.... RN-II units have an aligned RF-GF structure. This segregation
of RF-GF types is associated with the output function of the
double-saccade model. The output layer in the present model is
a single map of eye MEs. Hence the only task for the hidden
Retina-X Eye-X layer is to compute MEs. There might be other types of
coordinate transformations occurring in area LIP as well. The
C double-saccade model here may only reflect a part of the more
180" complicated LIP functional structures for different sensorimo-
tor integrations. When we modified this model by having
multiple output maps in different coordinates, for example, a
ME map and a head-centered spatial map, the distribution of
RF-GF types in the hidden layer changed; the units in both
RN-1 and RN-II networks exhibited aligned, opposite, and
intermediate RF-GF structures (Andersen et al. 1997).

The results in the preceding text outline the coordinate
frames used by the hidden units to encode saccadic targets in
double-saccade tasks. We further looked into the coordinates

1 10 20 30 of RN-I and RN-II network. For RN-II units, the tuning curves
Hidden unit to target retinal locations were plotted for different initial eye

Fic. 10. RF and GF of a RN-II unita: the visual RF of a typical hidden POSitions. A diagram showing how the tuning curves are com-
unit measured at the central eye position. The gray level of the dashed squieted is shown in Fig. 12 The — and - - - represent retino-
i§ proportional to th_e evoked response in the h!dden ithe spat_ial gain topic frames at the two eye positions E and the trajectories
field (GF) of the unit. The GFs are the responsiveness of the unit to a t"’“W‘?Eicate the saccades to eight target locations. The retinal target
within its RF plotted against an 8 8 grid of eye positions spaced by 10°. The . . L - - :
gray level and the size of small squares in the graphs correspond to {R€ations in the two eye-position frames are identical. If a unit
activation of the unitC: the RF-GF direction differences for every hidden unittncodes saccadic targets in retinal coordinates, the retinotopic
in the RN-II network. The direction of a RF was calculated as the vecteuning curves for different eye positions should align with each
direction from the center of the input map to the center of the RF. Tr@ther_ In contrast, if the unit encodes targets in motor coordi-

difference between tuning direction of a GF and the RF direction was com- . . . . .
puted for every hidden unit and shown in the figure. Hidden units are Iist&?tes' the tuning curves should shift with eye position. Flgure

along the horizontal axis; the vertical axis indicates the corresponding absolé#B Shows the retinotopic tuning curves for a typical RN-II
value of direction difference. Most hidden units have direction differences
close to 0°, i.e., the aligned RF-GF structure. A B
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RN-I units have an opposite RF-GF structure. The opposite
RF-GF structure is well suited to carry out the transformation
from head-centered coordinates to eye-centered coordinates.
This transformation requires subtraction of eye position from a
head-centered target location. The opposite signs for changes
of eye position and head-centered location, due to the opposite
RF-GF structure, meet the requirement of the subtractive op-
eration (Xing et al. 1994). This operation is required for com- Retina-X Eye-X
puting the ME of the second saccade from a distributed head-
centered representation in the RN-II network.

We further found that the visual and auditory RFs (VRFs 180 7
and ARFs) of RN-I units differed in two aspects: although
the VRF and ARF of a given unit usually aligned roughly, the
VRF was smaller than the ARF. Most ARFs were planar and
spread toward the edges of the auditory input n2xdhe GFs
for ARFs were much stronger (with steeper slopes) than those
for the VRFs. Further examining the connection weights we
found that the weights to the RN-I units from the visual inputs
were on the average stronger than the weights from the audi-
tory inputs and the RN-II inputs. With the sigmoidal integra- '
tion between the signals of eye position and target location, the 1 10 20 30
stronger connection weights to visual inputs resulted in a weak Hidden unit
eﬁ.eCt of eye posmon onthe ylsual reSponses. .Due to this Wealéle. 11. RFand GF of a RN-I unit. The illustrations are the same as in Fig.
gain modulation, no coordinate transformation occurred §@ a: the RF of a typical RN-I unitB: the GF.C: the direction differences.
visual inputs of single visual saccades or the first visual sagetice that most RN-I units have GF and RF in the opposite direction.

Retina-Y
Eye-Y

@)

Direction difference
(e}
o
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o




660 J. XING AND R. A. ANDERSEN

unit. In Fig. 1B, the vertical axis represents the responses and A
the horizontal axis indicates retinal locations. The — and - - - [«
are for the two eye positions. Although the responsiveness for \
\
|

@® First target location

a given retinal location is modulated by eye position, the two
tuning curves align well with each other. Therefore RN-II units
encode inputs of saccadic targets in retinal coordinates. These
units may correspond to the small portion of LIP neurons that
encode the memory of target locations (Mazzoni et al. 1996b).

Next we investigated the coordinates of the RN-I network.
Figure 13 shows the diagram for computing tuning curves of
RN-I units. Thex andy axes are in head-centered coordinates.
The target positions of the first saccade are indicate®,hye.,
the initial eye positions of the second saccade. The trajectories  §
represent the second saccades. In one test, the second saccade
are made outward to eight targets, as indicated with —. In the
other test, the second saccades are made inward from a differ-
ent set of initial eye positions to the same sets of targets as in
the first test. Thus the target locations are the same for the two
tests although the directions of the second saccades toward a
given target are different in the two tests. The tuning curves of
RN-I units are plotted for each test. FigureBL8hows the ) ) ) )

hef'e: 13. Tuning curves of a typical RN-I uni@: the diagram for comput-

“”7'”.9 curves for a_typlcal RN_.' unit. The_ reSPONSIVENess oft ing tuning curves in double-saccade testsietinal locations of the 1st target,

unit is plotted against the retinal location of the second sag, the initial eye positions of the 2nd saccade. The arrays represent the 2nd
cadic targets; the — and - - - are for the two tests. The resuitgcades. —, saccades to 8 target locations in 1 test; - - -, the saccades that are
show that the two tuning curves do not align in retinotopi'k'i‘ the opposite direction but end at the same locations as in the 1$B1dise

. . . . tuning curves for a typical RN-I unit. The responsiveness of the unit is plotted
coordinates. In Fig. 1G, the same set of data in Fig. B3s against the retinal location of the 2nd saccadic targets; — and - - -, for the 2

plptted against eye MEs. The two ME tuning curves allign We&ests, respectively. The 2 tuning curves do not align on the retinotopic space.
with each other. Therefore RN-I units encode saccadic targ€etshe same set of data as in Fig.BLB plotted against saccadic motor errors

in motor coordinates. These units may correspond to the nfge horizontal axis). The 2 motor error tuning curves align well with each
other. Thus the unit encodes saccades in motor coordinates.

| ==
l Second saccade

n

45

Respons:
40

0 90 180 270
Target location in space Motor ettor of saccades

jority of LIP neurons that encode MEs of saccades (Mazzoni et
al. 1996b).

Theoretically, eye-position modulation with the aligned
RF-GF structure yields a head-centered representation of target
locations in the distributed activity of RN-II units. This head-
centered representation is fed into the RN-I network after the
first saccade. With the opposite RF-GF structure in the RN-I
network, the new eye-position information is subtracted from
the head-centered representation to yield a ME of the second
saccade. Hence RN-I units encode saccadic targets in motor
coordinates. Therefore the model carries out coordinate trans-
formations required for double saccades in the following steps:
the RN-I network transforms target locations into the repre-
sentation of MEs through the opposite RF-GF structure (for
auditory targets), and the RN-II network provide the RN-I
network with a head-centered representation of the second
target through the aligned RF-GF structure. Thus the RN-I
network encodes motor plans of saccades, while the RN-II
network represents head-centered information implicitly
through distributed coding of RN-II units.

vy}

20 25

Response
15

10

0 90 180 270
Target retinal location DISCUSSION
FIG. 12. Tuning curves of a typical RN-II unif: the method for comput- . .
ing retinal location tuning curves for different eye positions. — and - - -, The meChanlsmS for programming memory SaC_CadE_S and
retinotopic frames at the 2 eye positions, E aridfor each eye position, the sequential saccades remain unclear to neurophysiologists. A
arrays indicate the saccades to 8 retinal locations. The retinal locations gigmber of computational models of saccade generation have
identical for the 2 eye position®: the tuning curves of a typical RN-II unit. ; : Al
The responsiveness of the unit (the vertical axis) is plotted against target retiti% en pr_oposed. Dominey and Arbib (1992.) proposed a cortical
locations (the horizontal axis). — and ---, the two initial eye positionssuPcortical model of the control of saccadic eye movement and
respectively. The 2 tuning curves align well with each other. suggested that the parietal cortex may dynamically remap the
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target locations in saccade ME maps to program double satiibition connections ensure that LIP encodes the next
cades. The network model developed by Droulez and Berthplanned saccade.
(1991) showed that target position could be memorized in aldeally, a push-pull structure suppresses any irrelevant stim-
sensory map and updated with eye-movement signals. Krouoti- that differ from the target location. However, through
menhoek et al. (1993) trained a neural network to computenulation we found that responses to stimuli close to the target
MEs using information about eye position. These computerere often sustained rather than suppressed. The minimal
tional approaches yield valuable insights into memory sadistance for an irrelevant stimulus to be suppressed varied from
cades. On the other hand, the frameworks in these models didt to unit but was roughly in an order of about 10°. Within
not correspond well to known neurophysiological data. Givehis distance, the output memory activity represented a ME that
that LIP neurons can withhold their saccade-related activityas a weighted average between the irrelevant stimulus and the
and participate in programming double saccades, the netwtakget. The function of the connection weights in Figh 5
model in this report studied the memory activity in area LIP faieflected this inaccuracy: Excitatory connections could occur to
saccadic eye movements. With the implementation of the sifbs that are 10—20° apart. Several reasons contribute to this
gle-purpose rule in the training process, the network develop@dccuracy: the tuning of the hidden units is broad; the limited
lateral excitation-inhibition (the push-pull structure) that wasumber of the hidden units prevents precise excitatory connec-
essential to memory and sequential saccades. The simuladteds; and the training samples of the stimulus locations are
neurons in our model exhibited properties similar to thos#ten more than 10° apart. We expect that using a large set of
recorded in area LIP. After training to make double saccadésdden units and finer spaced training stimuli, or an attention
the model carried out the coordinate transformations requiregechanism, would improve the accuracy of the push-pull
to program double saccades by the means of gain modulaticstsucture.
In our model, one group of neurons maintain the sensoryA number of neural network studies have used a push-pull
memory of saccadic targets, while the other group of neurosisucture as a memory-storage mechanism (Grossberg and Le-
encode the motor plan of an impending saccade. Thus codinige 1975; Seung 1996; Zhang 1995). Typically, adjacent units
the motor commands of double saccades is achieved by diif-these networks excite each other while distant units inhibit
ferent neuronal populations rather than by dynamically remagach other. Such an arrangement could prevent recurrent ac-
ping the same neuronal population. tivities from spreading to the whole network. Thus a push-pull
One prediction of the model is that neurons correspondingrmechanism also enforces the stability of a recurrent network.
the memory buffer RN-II respond to the second target but n8alinas and Abbott (1996) recently proposed another func-
the first one. Mazzoni et al. (1996b) found that 16% of LIFonal role of the push-pull structure in the parietal cortex. They
neurons encoded the location of the second target in a memdound that neurons in a recurrently connected network with
saccade task. These cells were referred as the “sensory mpuosh-pull connections could perform a product operation on
ory” cells. It would be interesting to test experimentalhadditive synaptic inputs. The resulting multiplicative gain
whether these cells encode only the second target or any vismaldulation is important for coordinate transformations in the
stimuli within their RFs. Furthermore the model predicts thatarietal cortex. In our model, the push-pull structure emerged
the responses of RN-Il neurons are gain modulated by ths the result of the single-purpose feature. Moreover, the ex-
initial eye position. Due to the push-pull structure, the activitgitation and inhibition were organized according to the pre-
of RN-II neurons is not affected by the new eye position. Thierred directions of the units, rather than the geometric posi-

remains to be tested experimentally. tions. Goldman-Rakic (1995) observed a similar lateral
inhibition structure in the opponent memory field of neurons in
Push-pull structure the frontal cortex. Schlag et al. (1998) found that, in the FEF,

cells that encoded similar eye movements mutually excited

Examining data from various kinds of delayed-saccade exach other while silencing those that would produce conflicting
periments, we found a common feature in the response pattezggie movements. Since the single-purpose feature might be
of LIP neurons—once a neuron is engaged in a saccade caommon for cortical areas involved in motor planning, it is
mand, its activity is maintained irrespective of further stimulijkely that the push-pull structure is a principle applicable to
the neuron starts to respond to another stimulus only after these cortical areas.
saccade being encoded is completed or the intention of theAn analogy to the single-purpose feature is the winner-take-
saccade is dismissed by some high level command. We calidld mechanism. The latter has been widely applied to the
this feature single-purpose. This feature is essential for threodels of visual search processes (Braddick 1997; Ferrera and
behaviors of a motor system. The eyes can never make saisberger 1995; Lee et al. 1999). In a visual search task, a
cades simultaneously to two different spots. target is searched among a number of distractors. A winner-

The single-purpose feature is used as a constraint for tiaée-all mechanism allows the neurons representing the target
training process of our networks. This constraint results in tlaed the distractors to compete against one another. Attention
push-pull structure, i.e., excitatory connections between ungsrves to bias the outcome of this competition toward the
with similar preferred saccadic directions and inhibitory cordirection of the selected target. As a result, the neuronal re-
nections between units with dissimilar preferred directionsponse to the target remains and the response to the distractors
Such an excitation-inhibition structure is the neuronal basis fer suppressed. Salzman and Newsome (1994) also proposed
the single-purpose feature. In the extended model of the dadhat a winner-take-all mechanism existed in the motion cortex
ble-saccade system, the push-pull structure allows the mode{dcea MT and MST). When more than one motion cue was
program two saccadic commands sequentially, rather than maxesented, monkeys chose the direction encoded by the largest
ing the two commands into one. Therefore the excitatiosignal in the representation of motion direction. Braddick
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(1997) suggested that local motion detectors use winner-tak@iaia et al. (1998) proposed a shift circuit to simulate RF
all interactions in global motion analysis. remapping in LIP, in which the FEF neurons shifted the RFs of
The single-purpose feature and the winner-take-all mechhe LIP neurons. However, the large RFs and the distributed
nism are similar in that both generate only one single outptibding feature of parietal neurons make it difficult for a precise
representation. The latter evokes neuronal competition basift circuit to work. The modeling results in this report show
on the context of stimuli and enhances the response to that the gain modulation is essential to carry out the coordinate
target stimulus through attention. Such a mechanism is ricinsformations in area LIP. Using this strategy, neurons may
suitable for area LIP because LIP neurons are generally inseemain in retinotopic coordinates for visual stimuli. With eye-
sitive to stimulus context and thus do not support a competitiposition modulation, the distributed activity of these neurons
process. The target to be represented in LIP is chosen by matan represent the stimuli in other coordinates. Varying RF-GF
intention and is not the result of an attention-biased compesiructures carries out different kinds of transformations. Hence
tion. The winner-take-all mechanism handles spatial conflidise gain modulation along with distributed coding is an effi-
in visual selection. The single-purpose feature assures no coient way to achieve sensorimotor transformations without
flicts in a temporal sequence of motor plans. Neurophysiologsing complex shift circuits. Other theoretic studies also re-
ical data support our assumption that a single-purpose featuealed the importance of GF properties in coordinate transfor-
exists in area LIP. It would be interesting to test this assumprations. Goodman and Andersen (1990) analytically demon-
tion further by recording the responses of LIP neurons tostrated that an aligned GF and RF relationship was required for

target and many distractors presented simultaneously. transformations from oculocentric to craniocentric coordinates.
A similar mechanism of eye-position modulation in the sac-
Coordinate transformations cadic system was studied by Krommenhoek et al. (1993, 1996).

They developed a neural network in which retinal signals and

A traditional question about planning double saccades as efference copy of eye position could be remapped to a ME
how the motor command of the second saccade is computedp in two steps: distributed coding of head-centered target
Two hypotheses have been proposed. One hypothesis is hgmdition at one level and of ME in eye-centered coordinates at
centered coding (Robinson 1975; Sparks and Mays 1983): #eother stage.
absolute target location in head-centered coordinates is com-
puted and stored, and then the new eye position after the fizgt remapping versus ME coding
saccade is subtracted. With this hypothesis, one would expect
to find neurons that encode visual targets explicitly in head- Experimental data demonstrate that the memory activity of
centered coordinates. However, physiological studies havk’ neurons encodes saccadic eye movements (Snyder et al.
largely failed to find such neurons. Most LIP neurons havi997). Furthermore it has been shown that LIP neurons encode
retinal RFs with their responses modulated by eye positiomotor intention, irrespective of the actual execution of the
The other hypothesis is retinotopic coding, also called vectplanned movements (Bracewell et al. 1996; Snyder et al.
subtraction (Bruce and Goldberg 1985; Scudder 1988): th®97). The simulated LIP neurons in our models indeed encode
retinal location of the target is stored and then the changetb&é impending saccade. On the other hand, Duhamel et al.
eye position is subtracted. This hypothesis requires neurd®892) proposed that LIP neurons encoded sensory stimuli
that explicitly encode the change of eye position. instead of saccades. In their experiment, as illustrated in Fig.

The simulation results of this report suggest a third posdi4A, the monkey was required to make a saccade to a remem-
bility: instead of computing explicit head-centered target locéered target, and this saccade would bring a stimulus onto the
tions or the change of eye position, LIP neurons utilize eyRF of the LIP neuron being recorded. It was found that the
position with the use of GFs to carry out coordinate transfoneuron responded to the stimulus outside its classic RF when
mation through the distributed activity of many neurons. In then impending saccade brought the stimuli into the RF. Some
double-saccade model, information about the second targetirons became active before the stimulus was brought into the
location is combined with the current eye-position signaleurons’ RFs by the saccades. Duhamel et al. thus concluded
through aligned RF-GF gain modulation to form a distributetthat the RF of the neuron transiently shifted with the eyes to the
head-centered representation. After the first saccade, the metinal location at which the stimulus could excite the neuron.
eye position comes in and is combined with the head-centerBais hypothesis is diagrammatically illustrated in Fig.B14
representation through the opposite RF-GF structure so that bhwging fixation, the representation of the visual scene was
ME of the second saccade is computed. This model does stable [eft). Immediately before or during the saccade the
require individual neurons to encode target locations in explicortical representation shifted into the destination of the in-
head-centered coordinates. The presence of GFs could accoeimded saccade. The neuron thus began to respond to the
for the computation of double saccades. Moreover, the expstimulus at a new retinal locatiorm{ddle). After the eye
imental results by Li et al. (1995) suggested that a distributetbvement, the cortical representation shifted back to match the
head-centered representation of targets might be maintainedisual inputs so that the neuron continued to respond to the
LIP for programming sequences of eye movements. Usisgmulus (ight).
reversible lesions of LIP, Li et al. found that the monkeys Quaia et al. (1998) proposed a model to explain the observed
depended on the new eye position more than the retinal vectshifts of RFs. In their model, a group FEF neurons carry the
to make the second saccade. Thus this model fits current dgigmal about impeding saccades; LIP phasic-tonic neurons have
well. stable local RFs and LIP phasic cells have shifting RFs. If a

Theoretically, coordinate transformations suggested by tREF neuron and a LIP phasic-tonic neuron are active at the
first two hypotheses above can be carried out by shift circuisame time, a LIP phasic neuron, whose RF is equal to the
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neuron. Therefore the RFs of the LIP phasic neurons are
shifted with impending saccades. Such a model requires a
specific connectivity: precise pairings between LIP and FEF
neurons. It also requires specific computations at the dendritic
level, i.e., a multiplication between cells in a pair and a logic
OR computation between different pairs to the same LIP phasic
cell. Both the connectivity and the computations are biologi-
cally difficult to implement. Moreover, although the model
explained RF remapping, it did not account for the coordinate
transformations in sequential saccades.

It is interesting to see how our model responds to the
paradigm of Fig. 1A. In Fig. 9C, the hidden unit responded to
the second target even though the target never appeared in the
unit's RF. This response appeared as if the RF of the unit
shifted to capture the second target, while in fact there was no
RF shift and the response was merely encoding the impending
preferred saccade. Figure @4dllustrates the model results in
the same experiment. After the target onset, some neurons fire
to the first intended saccade, and the neuron being recorded has

Response |
Eye position /< Saccade
no responseléft) since its RF is not in the preferred direction.

C Next, after the command to make the saccade is issued, the

Lip ® Neuronal response on-going activity is suppressed by postsaccadic suppression.
The network computes the ME of an intended saccade to the
__________________ stimulus based on the inputs of the new eye position and the

/r: i information about the stimulus location. As a result, the neuron
1 1

under recording becomes active since its PD is in the direction
/ of the next intended saccadwi(ldlg. Finally, the first saccade
Response l—— is completed, and the neuron continues to fire for the next
intended saccade, although this saccade may not actually be
/ <Saccade executed. Therefore the hidden units in the model can encode
stimuli outside the unit's RF using dynamically updated infor-
t New eye position mation about eye position. In this model, the cortical represen-
Suppression tation does not shift toward the stimulus and then shift back.

! - Instead, the activity of one group of cells goes up while the
FiG. 14. lllustrations of predictive responses before saccaddhe exper- i

Eye position

imental paradigm used by Duhamel et al. (1992) to test the predictable activﬂt ers _Come down for a new saccade plan. Thus different
in LIP. The monkey was asked to make a saccade to the target after the fixafistPulations of neurons are engaged and disengaged rather than
light went off. A stimulus outside the RF of the recorded neuron was presentétlividual neurons shifting their retinal RFs back and forth.
during the fixation, and the saccade would bring the stimulus onto the neuron'sDuhamel et al. (1992) reported that 44% of LIP neurons

RF. The neuron predictably responded to the stimulus before the sa&ad%ecame active before the saccade brought the stimuli into the
the diagram of transient RF shift accounting for predictable responses. The

solid-lined box corresponds the cortical representation of the space, the brok&Hrons RFs. Our quel can aCCQU”t for these predlctlve
lines indicate the retinal coordinates. The RF of the neuron being-recorded@sponses. Before the first saccade is made, the RN-I network
illustrated with the dashed area. The black dot indicates the response tonhay already begin to compute the ME of the second saccade
stimulus.Left the neuron has no response because the stimulus is outsidelygqng the information about the new eye position. Therefore
RF. Middle: the neurons begin to respond before the saccade because th : : :
shifts to overlap with the stimulufight the situation after the saccade. Th:tﬁg units co_dlng for the second saccade could b‘?cc.’me active
RF moves back and the stimulus is inside the RF due to the eye movemeRfore the first saccade. Thus the observed predictive remap-
Thus the neuron continues responding to the stimulus. The neuron’s respdpieg could be the result of the sequential activation of different
and the eye movement through time are illustrated onldher part of the populations of LIP neurons rather than jumping RFs. There is
graph.C: the diagram of neurons coding for the intended saccades. The perimental evidence that signals for new eye positions ap-
dot represents the response of the neurtest other neurons fire for the . .

intended saccade, the neuron being-recorded has no respditkte: the pgaar in some LIP neurons before the begmnmg_Of a saccade (C'
command for the saccade is issued so that the on-going activity is suppredsbdB. Breznen, and R. A. Andersen, unpublished data). In
by postsaccadic suppressioRight the 1st saccade is completed and theaddition, psychophysical studies by Dassonville et al. (1995)

neuron continues to fire for the next intended saccade, although this saccggdg| Schlag and Schlag-Rey (1995) indicated that spatial local-
may not actually be executed. The dashed rectangle indicates that the in[{ = : ;
mation about the new eye position can reach LIP before, during, or after tgétlon during saccades was largely based on updating of the

saccade is made. In both models, the neuron can predictably fire before Hh€rnal representation of eye position.
saccade is made. The 1st one requires remapping RFs; the 2nd one requires

predictably updating eye positions. Modeling multiple sequential saccades

difference of the RF of the LIP phasic-tonic neuron and the The present model only simulated single and double sac-
motor field of the FEF neuron, is activated. All pairs of LIRtades. How would the model handle more than two saccadic
phasic-tonic neurons and FEF neurons, whose RF/motor figdtigets in a sequence? Our double-saccade model can be
difference is equal, must be connected to the same LIP phagrewed as a schematic version of a model of multiple-sequen-
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tial-saccades. In this report, we focused our model on how tBeser DG anp Houk JC. Model of cortical-basal ganglionic processing:
coordinate transformations of two sequential saccades wer@ncoding the serial order of sensory evedtileurophysiolr9: 31683188,
carried out. We could extend the model to handle mumpERACEWELL RM, MazzoNi P, BARASH S, AND ANDERSENRA. Motor intention

saccades in the fOllOWIhg two ways: the model has rnoreactivity in the macaque’s posterior parietal area LIP. Il. Changes of motor

memory buffers each holding the memory of every additionalp|an, 3 Neurophysiol76: 1457-1463, 1996.

saccade and the input layer of the model could correspoBghobick O. Local and global representations of velocity: transparency,
either to sensory inputs or to inputs from a memory systemopponency, and global direction perceptidperception 26: 995-1010,
The first possibility is perhaps too rigid and the architecture is1997.

iefs ; ; ihili RUCE CJ AND GoLbBerG ME. Primate frontal eye fields. |. Single neurons
difficult for brain to implement. In the second possibility, thé discharging before saccadasNeurophysiob3: 603- 635, 1985,

target locations and thef orders of the presentation are heldCH\)VAN JD. Statistical mechanics of nervous net.Neural in Ravellogdited
the memory system while RN-I and RN-II networks carry out by Caianiello R. Berlin: Springer, 1972, p. 181-188.

the coordinate transformations for the impending saccade. B@ssonviLLE P, SHLAG J, AND ScHLAG-REY M. The use of egocentric and
havioral and physiological evidence supports this possibility.exggengS'oca“O” cues in saccadic programmvigsion Res35: 2191~
Tra|n|n_g m.o_”keys to perform more than two sequential s ,I-EHAEN’ESAND CHANGEUX J. A simple model of prefrontal cortex function in
cades is difficult. Barone and Joseph (1989) were able to traigejayed-response tasksCognit Neuroscll: 244—261, 1989.

monkeys to make sequential saccades to three fixed tame@tiney PFanD Arsis MA. A cortical-subcortical model for the generation
locations. However, they only observed prefrontal neurons thagf spatially accurate sequential saccadesteb Cortex2: 153-175, 1992.

. LEz J AND BERTHOZ A. A neural model of sensoritopic maps with
responded to the first target or the second target, but no neurBﬁ%‘e’dicﬁve short-term memory propertieBroc Natl Acad Sci US/88:

responded to the third target. The result suggested that thgssa og57 1991,

memory for more than two sequential targets was not direCthynaver J-R, GLsy C, anp GoLbsere ME. The updating of the represen-

handled by the parietal or the prefrontal cortex. tation of the visual space in parietal cortex by intended eye movement.
In summary, the models in this report capture the importantScience2s5: 90-92, 1992.

. . P . RRERA VP AND LISBERGERSG. Neuronal responses in visual areas MT and
characteristics of LIP neurons and provide insights into tH:EMST during smooth pursuit target selectidrNeurophysiol8: 1433-1446,

mechanisms of LIP in programming eye movements. By opti-1g97.
mizing the network to implement various saccadic tasks, tvonanasH S, Bruce CJ, AND GoLbman-Rakic PS. Mnemonic coding of

important properties emerge from the model: push-pull recur-isual space in the monkey's dorsolateral prefrontal codeNXeurophysiol

. . : 1 331-349, 1989.
rent connections and opposite/aligned GF structures. Th%ﬁ%II'-ER JM. Not the module does memory make—but the netw@&shav

properties are the basics for programming memory saccadg$i.in sci1s: 631-633. 1995.
and sequential saccades. The consistency of simulated ressd{seerc ME anp Bruce CJ. Primate frontal eye fields. Ill. Maintenance of
and current experimental data suggests that the models are wellspatially accurate saccade sigrlaNeurophysiob4: 489-508, 1990.

suited to describe the sensorimotor processing in area LIP &fgOWAN SJAND ANDERSENRA. Algorithm programmed by neural network

- . -:model for coordinate transformations. IRroceedings of the International
thus can be used as a framework to guide future experiments Igl]aint Conference on Neural Networks, San D'Leg%n Arbor, MI: IEEE

understanding the neural functions of LIP. Neural Network Council, 1990, vol. 2, p. 381-386.
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