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Xing, Jing and Richard A. Andersen. Memory activity of LIP
neurons for sequential eye movements simulated with neural net-
works.J Neurophysiol84: 651–665, 2000. Many neurons in macaque
lateral intraparietal cortex (LIP) maintain elevated activity induced by
visual or auditory targets during tasks in which monkeys are required
to withhold one or more planned eye movements. We studied the
mechanisms for such memory activity with neural network modeling.
Recurrent connections among simulated LIP neurons were used to
model memory responses of LIP neurons. The connection weights
were computed using an optimization procedure to produce desired
outputs in memory-saccade tasks. One constraint for the training
process is the “single-purpose” rule, which mimics the fact that once
LIP neurons hold the memory activity of a saccade, they are insen-
sitive to further stimuli until the motor action is completed. After
training, excitatory connections were developed between units with
similar preferred saccade directions, while inhibitory connections
were formed between units with dissimilar directions. This “push-
pull” mechanism enables the network to encode the next intended eye
movement and is essential for programming sequential saccades. In
simulating double saccades, the push-pull connections locked the
on-going activity in the network for the first saccade until the saccade
was made, then a new population of units became active to prepare for
the second saccade. The simulated LIP neurons exhibited sensory
responses and memory activities similar to those recorded in LIP
neurons. We propose that push-pull recurrent connections might be
the basic structure mediating the memory activity of area LIP in
planning sequential eye movements.

I N T R O D U C T I O N

The lateral intraparietal cortex (LIP) is involved in program-
ming saccadic eye movements (Andersen and Gnadt 1989;
Lynch et al. 1977). Many LIP neurons exhibit sustained re-
sponses to remembered visual or auditory targets (Mazzoni et
al. 1996a). During delayed-saccade tasks in which the monkey
withheld a saccade to a remembered target for a short period of
time, the response of LIP neurons triggered by the target was
sustained until the saccade was initiated (Andersen et al.
1990a,b; Gnadt and Andersen 1988). Moreover, neurons could
maintain the memory for the saccade even if the monkey was
presented with new stimuli during the withholding period.
Negatively correlated memory responses have also been ob-
served in LIP, and such responses occurred when the remem-
bered saccade was opposite the neuron’s preferred saccadic
direction (Barash et al. 1991a,b). Memory activity was further

characterized with the delayed-double-saccade experiments
(Mazzoni et al. 1996b) in which the monkey was trained to
memorize two consecutively flashed targets and to plan two
saccades to the targets in the order that the targets were
presented. During the delayed period, many LIP neurons
whose preferred directions were in the direction of the first
saccade fired continuously until the execution of the saccade.
These neurons thus held the correct memory for the first
saccade regardless of the flash of the second target. Neurons
coding for the second saccade started to fire only after the first
saccade was executed. The results indicated that memory ac-
tivities for the majority of LIP neurons encode the next planned
saccade. On the other hand, a small percentage of LIP neurons
encode the memory of target locations instead. The sustained
responses in all kinds of delayed-saccade tasks have a common
feature: neurons begin to encode a new saccadic movement
only after the current motor plan is disengaged. We call this the
“single-purpose” feature.

Short-term memory activity has been observed in a number
of cortical areas (Funahashi et al. 1989; Gnadt and Andersen
1988; Goldman-Rakic 1995; Kalaska and Grammond 1995;
Quintana and Fuster 1992). Several computational studies have
proposed that recurrent connections might be the mechanism
for this activity (Cowan 1972; Dehaene and Changeux 1989;
Fuster 1995; Zipser 1991). The purpose of this report was to
study the mechanisms of saccadic-related memory activities in
area LIP. Especially, we were interested in how the single-
purpose feature was related to programming delayed double
saccades. Based on experimental tasks, we used recurrent
neural networks to simulate the memory features of LIP neu-
rons. We first studied the mechanisms of memory saccades and
then examined an extended model for planning double-sac-
cades. Preliminary results of this report have been presented in
abstract form (Xing et al. 1995).

M E T H O D S

The model is a three-layered neural network, with a similar struc-
ture to that of Zipser and Andersen model (1988). The diagram of this
model is shown in Fig. 1. The model was not designed to resemble the
complex anatomy of area LIP. It is the typical classic neural network
that can be trained to carry out the required sensorimotor transforma-
tions. The input layer, like area LIP, has access to visual and auditory
target locations as well as eye position in the orbit. The output layer
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is a topographic map of eye motor errors. The middle layer, or the
hidden layer, is a recurrent network with every unit receiving activi-
ties from all other hidden units. Every unit in the input layer is
connected to each of the hidden units, which are in turn connected to
all the output units. The weights of connections vary between21 and
11. They are initially set to small random values between20.1 and
0.1. The weights are adjusted to encode the motor errors of visual or
auditory targets at the output map.

The input layer consists of a visual map in retinal coordinates, an
auditory map in head-centered coordinates, and eye-position units.
The visual map uses 83 8 units to model a240° to 40° retinal space.
Each of the units has a Gaussian receptive field (RF) with a 1/e width
of 15°. The centers of the RFs were equally spaced over the 83 8 grid
with 10° spacing. These units encode target locations with their
activation values between 0 and 1. The auditory input is modeled
using an auditory map of an 83 8 array of units, similar to the visual
one. The only difference between the two input maps is that the
auditory units encode target locations in head-centered coordinates
and the visual units encode target locations in eye-centered coordi-
nates. Eye positions is coded by four sets of eight units representing
horizontal and vertical eye coordinates with positive and negative
slopes. The activation of the units, with various intercepts and slopes,
is thus an increasing function of eye positions.

The middle layer, also called the hidden layer, typically has 30 units
in the simulations presented in this report. Each hidden unit receives
inputs from all three input channels. In addition, each hidden unit
receives recurrent projections from all other hidden units. The acti-
vation of a hidden unit is calculated by first summing all inputs and
then calculating the output as a sigmoidal function of the total input.
At a given simulated time step, the activation of a hidden unit can be
expressed as the following: output activation5 1/[1 1 exp(2net)]
where net5 sum of weighted inputs1 bias.

The inputs here include the activities of the visual, auditory, and
eye-position units at the current time step and the activities of other
hidden units at the previous time step. The sigmoid function is chosen
as the activation function because it resembles the operation per-
formed by actual neurons that sum inputs, have a threshold, and
saturate at high levels of activity. In the middle region of its dynamic
range, the sigmoid approximates a linear function.

The output layer is an eye-centered map encoding eye motor errors
(ME) of saccades. An 83 8 array of output units is used to represent
MEs topographically. Each of the units covers a 10° space of MEs
with a Gaussian 1/e width of 15°. The activation of the output units,
like the hidden units, is a sigmoidal function of the sum of the
weighted inputs from the hidden units. We use E to represent the
initial eye position, V for the locations of visual targets in retinal

coordinates, and A for the locations of auditory targets in head-
centered coordinates. For simple saccades, ME5 V for visual targets
and ME5 A 2 E for auditory targets. For double saccades, we use
E0 to represent the initial eye position, V1 for the location of the first
visual target in retinal coordinates, and A1 for the location of the first
auditory target in head-centered coordinates. E1 represents the eye
position after the first saccade. V2 and A2 indicate the second visual
and auditory targets, respectively. The desired ME output for the first
saccade is ME5 V1 for visual targets or ME5 A1 2 E0 for auditory
targets. The ME for the second saccade is ME5 A2 2 E1 or ME5
V2 1 E0 2 E1.

Training process

We use an algorithm “backpropagation-through-time” to train the
network. This algorithm gradually optimizes connection weights to
produce the desired output in a recurrent neural network (Munro et al.
1994; Werbos 1990; Williams and Zipser 1995). We use this algo-
rithm simply to train the network to perform the required sensorimotor
transformations with no intention to claim that the algorithm is similar
to the learning mechanisms in the brain.

The backpropagation algorithm uses supervised learning. It first
computes an error signal, which is the difference of the desired output
(the teacher signal) and the actual output. This error signal is then used
to update connection weights. The amount of weight change depends
on the error signal, the activities of the two connected units, and an
arbitrary learning rate. In our implementation of the algorithm, the
desired activityAexp for each output unitk is determined by the
expected ME of a saccadic target. The actual outputAo of an output
unit is computed for a given target location, eye position and the initial
weights. The error signaldk for an output unitk is

dk 5 Aexp 2 Ao

A connection weightWho from a hidden unit to an output unit is
updated according to

DWho 5 npAhpAop~1 2 Ao!pdk

whereAh is the activity of the hidden unit. The learning raten in our
simulations is 0.05.

A connection weightWih from an input unit to a hidden unit is
updated according to

DWih 5 npAipAhp~1 2 Ah!pO
k

~dkpWhok
!

whereAi is the activity of the input unit anddk is the error signal of
an output unitk.

A recurrent connection weightWhh from a hidden uniti to another
hidden unitj is updated according to

DWhh 5 npAhi
~t 2 1!pAhj

~t!p~1 2 Ahj
~t!!pO

k

~dkpWhojk
!

whereAhi
(t 2 1) is the activity of the hidden uniti at the previous time

step andAhj
(t) is the activity of the hidden unitj at the present time

step.
In a recurrent network, the output of the network accounts for both

the current inputs and the activities at earlier times. We run the
network in 13 discrete time steps for each training cycle. To compare
with experimental recordings, one time step can be viewed as a
duration of 100 ms. The time lag of the recurrent connection is one
time step. The input of a visual or auditory target location lasts for one
time step while an eye-position signal sustains until a saccade is made.
The teacher signal, which is the expected ME in the output layer,
appears several steps after the onset of a target simulation and lasts for
one time step. This signal mimics the command to make a saccade.
The weights of the feedforward connections and recurrent connections

FIG. 1. The diagram of the recurrent network model for memory saccades.
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are updated at the time of this saccade command. Note that we did not
simulate the shut-off of the neuronal activity after a saccade is made
(i.e., the postsaccadic suppression). Therefore the recurrent activity in
the network may sustain indefinitely unless it is turned off by other
mechanisms, as detailed later in the extended double-saccade model.
Since different training patterns are employed for models of single-
and double-memory saccades, details about the training patterns will
be described in each section as needed.

R E S U L T S

Model of memory saccades

MODEL TRAINED WITH SINGLE MEMORY SACCADES. We first
trained the model to perform single memory saccades. Twenty-
five target locations across the input space and 25 eye positions
were chosen as training samples. For each training cycle, a
visual or an auditory target at a chosen location was presented
at the first time step. A saccadic target was simulated as a dot
stimulus with the amplitude of 1. The saccade was made
randomly between the fifth to ninth time steps. The model was
trained to encode the ME of a saccade at the time step when the
saccade was made. The paradigm is illustrated in Fig. 2A. After
approximately 3,000 training cycles, the network learned to
produce and memorize saccadic MEs correctly to any input

pairs of target location and eye position. The performance of
the trained network was evaluated by comparing the expected
ME for a given target location and eye position with the
produced ME at the output layer. We tested 100 random input
pairs of eye position and target location for the trained net-
work. The standard deviation of the actual ME outputs from
the expected MEs was 2.62°. Figure 2B shows one example of
the model output. For simplification, only eight units (which
include the one with the maximum response) along one dimen-
sion (1-D) of the two-dimensional (2-D) output map are
shown. The vertical axis is the 1-D ME and the horizontal axis
indicates time steps. The gray level of squares is proportional
to the responses of the output units. The horizontal bar indi-
cates the gravity center of the responses. “T” indicates the
expected ME of the target. Figure 2B shows that the model
produces the correct output and the activity sustains throughout
the delay period.

One important feature of LIP neurons is that the memory
activity sustains even when new stimuli are presented during
the memory period. A stimulus that appears at a different
location from the target during the delay period is called an
irrelevant stimulus. The memory activity of LIP neurons is
resistant to irrelevant stimuli (Mazzoni et al. 1996b). However,
the preceding trained network failed to produce this feature.
When a new stimulus was presented during the delay period,
the output pattern of the network shifted away from the ex-
pected ME, as shown in Fig. 2C. The final motor command for
the saccade was thus incorrect. Correspondingly, the memory
activity of hidden units was disturbed with the presentation of
the irrelevant stimulus. Therefore although this network can
perform simple memory saccades, it is insufficient to model the
memory properties of LIP neurons.

The network also failed to produce the inhibitory activity
observed in many LIP neurons. By examining the weights of
the recurrent connections, we found that connections between
units with similar preferred saccade directions (PD) became
stronger with the progress of training. Strong excitatory con-
nections mostly occurred between units with similar PD at the
end of the training. The responses to targets were sustained
through the circulation of the activity using these connections.
On the other hand, inhibitory connections were rarely observed
in the network.

MEMORY-SACCADE MODEL TRAINED WITH THE SINGLE-PURPOSE

FEATURE. Training and network performance.We retrained
the same model in Fig. 1 by applying the single-purpose
feature to the training procedure as a constraint. Figure 3A
shows a typical training pattern. The target was flashed for one
time step as before. In addition to the target, an irrelevant
stimulus was presented at a random location during the delay
period. The irrelevant stimulus was a dot stimulus lasting for
one time step. The network was required to yield the correct
ME of the saccade to the target. Thus the activation of the
irrelevant stimulus was to be ignored. At the time of the
saccade command, the difference between the expected ME
and the actual output was computed for each output unit; the
weights of connections were adjusted accordingly.

In the beginning of training, the output of the network was
shifted by the presentation of the irrelevant stimulus. Gradu-
ally, the effect of the irrelevant stimulus became less. Eventu-
ally, after 4,000–5,000 training cycles, the network learned to

FIG. 2. The training pattern and the performance of the simple memory-
saccade model.A: the typical training pattern. Eye movement is indicated with
the lines and the short bar indicates the timing of the target.B: the 1-dimen-
sional (1-D) ME output (y axis) through time (x axis). Each square indicates 1
output unit, with the gray level of the square representing the responsiveness.
The short bars indicate the averaged response center of the 1-D output. The
black dot indicates the time of the presentation (x axis) and the expected ME
of the target.C: the 1-D output when a stimulus is presented during the delay
period. The output is shifted by the stimulus.
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hold the correct ME memory of the first target at the end of the
delay period, irrespective of the presentation of the irrelevant
stimuli at any location and any time during the delay period.
Figure 3B shows an example of such a response. The standard
deviation of the actual output from the expected output is
2.91°.

Through training the hidden units acquired localized RFs for
both visual and auditory inputs. The visual and auditory re-
sponses to targets were modulated by eye position. The map of
this modulation over different eye positions is called a “gain
field” (Zipser and Andersen 1988). Most hidden units were
also tuned to saccadic movement directions. These properties
are similar to those observed in LIP neurons and to those
obtained from a similar model without recurrent connections
(Xing et al. 1994). In this report, we are more interested in the
sustained response patterns of the hidden units.

Figure 4 shows two typical response patterns of a hidden
unit. Theleft panelindicates the RF of the unit as well as the
locations of the targets and irrelevant stimuli. Theright panel
shows the responses through 13 time steps. The timing of
inputs and the expected saccades is indicated at the top of the
figure. In Fig. 4A, the target falls onto the unit’s RF, and the
saccade is in the unit’s preferred direction. The unit responds to
the target and activity sustains throughout the delay period.
Notice that the brief presentation of the irrelevant stimulus
during the delay period does not affect the memory activity. In
Fig. 4B, the target is opposite to the preferred saccadic direc-
tion, while the irrelevant stimulus falls in the center of the RF.
The unit does not respond to the target. It has a brief response
to the irrelevant stimulus, but the response is immediately
suppressed. Some units do not respond to the irrelevant stimuli
at all. This kind of activity is often observed in double-saccade
experiments in which neurons have little or no response to the
brief flash of the second target during the delay period.

Through the use of various test patterns, we find that there
are different types of hidden units. A small portion of the
hidden units only have sensory responses but no sustained
activity during the delay period—the units respond to a target,

and the responses die away soon after the target disappears.
Detailed examination of these units reveals that the weights of
inward recurrent connections to them are very weak. These
units are merely the result of the random process of training.
The majority of the hidden units exhibit different types of
response patterns, depending on the tasks. A unit may have
sensory responses and memory activity to a saccadic target
presented in its RF as shown in Fig. 4A. Alternatively, if the
stimulus in the RF is an irrelevant stimulus, the unit may only
show a weak, brief responses or no response at all (Fig. 4B).
More importantly, the irrelevant stimulus does not shift the
firing activity away from the response evoked by the first
stimulus. When the target is in a unit’s preferred direction but
does not fall in the center of the RF, the unit has a weak
response to the flash of the target but its elevated activity is
sustained during the delay period. This memory activity is due
to the excitatory inputs from other units with similar PDs (as
will be explained in the next section). These response patterns
are exactly what were found in LIP neurons in memory-
saccade experiments (Mazzoni et al. 1996b).

Structure of the recurrent network.To understand the un-
derlying mechanisms of saccadic memory activity, we exam-
ined the connectivity developed in the recurrent network. Fig-
ure 5A shows the weights of recurrent connections between the
hidden units. The weights are plotted against the difference of
preferred directions of the connected units with each dot for
one connection. Compared to the recurrent connectivity in the
model trained without the single-purpose constraint, strong
inhibitory connections were developed between the units with
dissimilar PDs in addition to the excitatory connections be-
tween the units with similar PDs. The distribution of all con-
nection weights is relatively continuous, varying between21
and11. Figure 5B summarizes the data in Fig. 5A. The units
with similar PDs have the strongest excitatory connections, and
the excitatory connections become weaker as the PD difference
increases. With the PDs further apart, the connections between
the units become inhibitory. The strongest inhibitory connec-
tions occur to units with opposite PDs.

We therefore propose a recurrent model for memory activ-

FIG. 4. Typical response patterns of a hidden unit in the memory-saccade
model.Left: spatial arrangement of the tasks. The receptive field (RF) of the
unit is indicated with the dashed area. The star symbol indicates the irrelevant
stimulus (IS), and the target (T) is represented with the black dot. The arrow
line shows the saccade.Right: each graph shows the response of the hidden
unit through time. The height of the bars corresponds to the responsiveness.A:
the sensory and memory activity to a target in the unit’s RF.B: the brief
response to an irrelevant stimulus in the RF.

FIG. 3. The training pattern and the performance of the model with the
memory-saccade feature.A: the training pattern. The timing of the target and
the irrelevant stimulus are indicated with short bars and the eye movements are
indicated with lines.B: the 1-D output of the model after training, illustrated
in the same way as in Fig. 2. *, the presentation of the irrelevant stimulus.
Compared to Fig. 2C, the stimulus did not shift the output center.
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ity: lateral excitation pulls responses together from units with
similar PDs to maintain the activity over a period of time,
while lateral inhibition pushes away any response in units with
dissimilar PDs so that their responses do not disturb the ongo-
ing memory activity. Such a push-pull structure could be the
basic architecture for the single-purpose feature of memory
activity in area LIP. Recurrent excitation may invoke a set of
neurons with similar PDs to maintain the memory activity.
Once this neuron population is engaged, those neurons with
dissimilar PDs are suppressed due to the inhibition. Thus when
a new stimulus is presented at a different location, the neurons
tuned to that direction are inhibited. Even if some of these
neurons may respond weakly, as shown in Fig. 4B, the activity
is immediately suppressed by the existing cooperative activity
of the first population. Therefore the push-pull structure can
lock the ongoing activity to prevent it from being disturbed.
Only after the remembered saccade is made and the coopera-
tive activity is turned off, can the network perform a new task.

Notice that the inhibition is a training result of ignoring
irrelevant stimuli, i.e., a result of the single-purpose feature.
The weights of feedforward and recurrent connections were
adjusted such that the hidden unit activity evoked by the
one-time-step presentation of the dot stimulus was not strong
enough to override the inhibition. Since the ability of the
network to resist irrelevant stimuli depends on the training
stimuli used, a strong sustained irrelevant stimulus or simulta-
neously presented multiple stimuli could override the recurrent
activity of the network trained here. Similarly, a strong sus-
tained inhibitory input to the hidden layer could override the
recurrent activity maintained by excitatory recurrent connec-
tions. This allows the network to be reset quickly.

Model of double saccades

LIP neurons participate in planning sequential eye move-
ments. This has been typically studied with double-saccade
experiments. In this section, we first summarize the neurophys-
iological data and then extend the memory-saccade model to
make a sequence of two saccades.

PHYSIOLOGICAL RESULTS TO BE MODELED. The delayed dou-
ble-saccade tasks by Mazzoni et al. (1996b) were designed to
test whether LIP neurons encoded sensory locations or motor
plans of saccades in sequential eye movements. The monkeys
were required to memorize two targets briefly flashed in suc-
cession during a delay period and to make a sequence of two
saccades to the two targets after the fixation light went off. The
memory activities during the delay period (before the 1st
saccade) and during the intersaccadic interval (after the 1st
saccade and before the 2nd saccade) were examined. Extracel-
lular recordings showed that during the delay period, many
neurons whose movement fields were in the direction of the
first saccade fired continuously until the first saccade was
made, whereas neurons coding for the direction of the second
saccade started to fire only after the first saccade was per-
formed. Figure 6 shows the responses of a typical LIP neuron
in different double-saccade tasks. Theleft panelshows the two
saccades made toward the two remembered targets. The dashed
curve indicates the neuron’s RF. This neuron preferred sac-
cades in the down-left direction. The saccadic targets are
indicated with black dots and labeled as T1 and T2. Responses
of the neuron are shown in theright panel. The delay period is
labeled as M1. The horizontal and vertical eye positions are
plotted under the responses. The first deflection in these eye
traces corresponds to the first saccade and the second deflection
corresponds to the second saccade. In Fig. 6A, both targets fall
in the RF, and only the first saccade is in the neuron’s PD. The
neuron fires during the delay period. The sustained activity
goes off after the first saccade is made. In Fig. 6B, the first
target is outside the RF and the second target falls in the RF.
The second saccade is in the neuron’s PD. The neuron has a
brief response following the flash of the second target, and this
activity does not sustain during the delay period. After the first
saccade is completed, the neuron begins to fire and the activity
sustains until the monkey makes the second saccade. Thus the
activity is related to the second saccade. In Fig. 6C, no targets
fall in RF, but the second saccade is in the neuron’s PD. The
neuron has no response to the flash of either target. However,
it fires during the intersaccadic interval and thus codes for the
second saccade. Therefore this neuron encodes a preferred
impending movement regardless of target locations. As shown
in Fig. 6C, the activity does not even depend on sensory
stimulations. Seventy-seven percent of LIP neurons recorded
encode the impending saccade. It is concluded that the memory
activity of the majority of LIP neurons encodes the next
planned saccade. On the other hand, 16% of neurons encode
target locations instead. These neurons begin to fire after the
flash of the second target, which falls in their RFs, and the
activity lasts through the delay period and the intersaccadic
interval. These neurons may participate in programming sub-
sequent saccades because information about the second target
needs to be held until the first saccade is performed. The
remaining neurons, approximately 7%, were difficult to clas-
sify into one or the other of the two categories.

From a large amount of experimental data, we generalized
three basic features about LIP neurons in double-saccade tasks.
Feature 1: Single purpose—The sustained activity for the first
saccade is only minimally transiently affected by the brief
presentation of the second target.Feature 2: Postsaccadic
suppression—The sustained activity is sharply turned off after
the saccade is performed. This turning off is also seen in simple

FIG. 5. The weights of recurrent connections.A: the weight of recurrent
connections (y axis) are plotted against the difference of the preferred direc-
tions of the 2 connected hidden units. Each dot is for 1 connection.B: the
diagram of the push-pull mechanism. Shaded circles represent hidden units and
lines represent recurrent connections.
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memory saccades.Feature 3: Memory buffer—A separate
population of neurons hold information about the second tar-
get. This population should project to those LIP neurons which,
in turn, project to other motor/premotor areas.

MODEL. Based on the preceding experimental observations,
we extended the memory-saccade model to simulate double-
saccade tasks. Figure 7 is a diagram of the extended model.
Besides the recurrent network in the original memory-saccade
model, called recurrent net I (RN-I) here, the extended model
has an additional recurrent net in the hidden layer (RN-II). This

population of units also receive visual, auditory and eye-
position inputs. Its output projects to the primary hidden net
(RN-I). Every RN-II unit projects to all RN-I units. Like RN-I
units, RN-II units are fully interconnected. The postsaccadic
suppression is also built into the model. It artificially resets the
activity of RN-I units to the initial state after the first saccade
is made. The push-pull structure of the RN-I network is capa-
ble of carrying outfeature 1,the single-purpose feature; post-
saccadic suppression servesfeature 2, i.e., turning off the
memory activity in RN-I after a saccade is made; and the RN-II
network serves the memory buffer forfeature 3.This model is
expected to produce the following response patterns: RN-I
units encode the first saccade, and the activity is sustained
while a brief presentation of the second target does not affect
the on-going activity in RN-I due to the push-pull mechanism;
information about the second target and the initial eye position
is maintained in RN-II; the postsaccadic suppression turns off
RN-I activity after the first saccade is made; and after the first
saccade is performed, RN-I combines the new eye-position
information with the input from RN-II and produces a new ME
for the second saccade.

The RN-II network acts as a memory buffer for the second
target. In a delayed double-saccade task, different populations
of neurons must be involved to hold the information about each
target and thus a memory buffer is necessary. This memory
buffer could correspond to the 16% of LIP neurons coding for
target locations (Mazzoni et al. 1996), or it may come from
some brain areas outside area LIP, such as area 7a or the frontal
lobe. We do not specify which of the two possibilities corre-
spond to the RN-II network since there is currently not suffi-
cient experimental evidence to make this determination. The
RN-II network loads the target that is retained in a memory
buffer, i.e., the input lines of the RN-II network are open only
after the onset of the second target.

An important control structure of the model is the postsac-
cadic suppression, which turns off the activity of RN-I units
after the saccade is made. Such a turning-off action is neces-
sary for neurons to encode a new saccade. During single-
memory-saccade and double-saccade tasks, sharp turning-off
of LIP neuronal activity is often observed right before or after
the saccade. One possible source of such suppression is the
efferency copy of the eye movement command. However, in a
change-plan experiment (Bracewell et al. 1996), where the

FIG. 7. The diagram of the extended model for double saccades. The
recurrent net-II (RN-II) and the postsaccadic suppression are added to the
simple memory-saccade model shown in Fig. 1.

FIG. 6. Activity of a lateral intraparietal cortex (LIP) neuron coding for
motor intention. The responses of a typical cell encoding impending ME in 3
double-saccade tasks. Each panel has a plot that includes, fromtop to bottom,
the spike rasters for each trial, the time histogram of the firing rate, and the
horizontal and vertical eye positions (30°/division) (abscissa: 100 ms/division).
The vertical dotted lines and the thick horizontal linesbeloweach panel show
the onset and offset of the visual stimuli. The deflections in the eye traces
correspond to the first and the second saccades in sequence. The diagrams to
theleft of each panel show the spatial arrangement of the 1st and 2nd target (T1
and T2, respectively), the 1st and 2nd saccades (arrows), and the neuron’s RF.
This figure is modified from Mazzoni et al. (1996b).
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monkey was required to prepare a saccade to a new target
during the fixation period, the memory activity of LIP neurons
for the previous planned saccade was turned off sharply even
though no eye movement was made. Thus eye movement
information could not be the only source for the suppression. A
high-level signal that changes the memorized saccadic plan
may terminate the activity of the neurons. The suppression thus
could be due to strong inhibitory inputs from other high-order
cortical areas, such as the frontal eye field (FEF). Many neu-
rons in the FEF exhibit postsaccadic activities (Bruce and
Goldberg 1985; Goldberg and Bruce 1990). Given that the FEF
has feedback connections to area LIP, it is possible that those
FEF neurons send a damping signal to LIP to provide the
postsaccadic suppression. The generation of such inhibitory
inputs is beyond the scope of the model. We mimicked this
postsaccadic suppression by simply resetting the network arti-
ficially.

TRAINING PROCEDURE. In each training cycle, two targets (T1
and T2), either visual or auditory, are randomly selected for
position and modality and presented to the network for a
duration of one time step. With E0 representing the initial eye
position, V1 for the location of the first visual target in retinal
coordinates, and A1 for the location of the auditory target in
head-centered coordinates, the desired ME output at the end of
the delay period is ME5 V1 for visual targets or ME5 A1 2
E0 for auditory targets. After the first saccade is made, the eye
is moved to the new position E1. The desired output at the time
of the second saccade is ME5 V2 1 E02 E1 or ME5 A2 2
E1. Here V2 and A2 indicate the second visual and auditory
targets.

Figure 8A illustrates the training protocol. Target T1 is
flashed at the beginning of a training cycle and T2 is flashed at
a randomly selected later time step. The two saccade com-
mands, labeled as S1 and S2, are made for the two targets,
separated by two time steps in the intersaccadic interval. The
length of this interval is arbitrary, simply mimicking the ap-
proximately 100- to 200-ms time lag between two consecutive
saccades in double-saccade tasks. The initial eye-position sig-
nal E0 lasts until the time of S1; the new eye-position signal E1
starts after S1. The RN-I network is open all the time except for
the reset at the time of S1. The RN-II network begins to open
only after the onset of target T2. The error signals for learning
are computed at the time of S1 and S2. The connection weights
are adjusted accordingly.

Figure 8B shows an example of the model performance at
the output layer after training. After the training is completed,
the connections are fixed. Like in the training period, the
network is run for 13 time steps for a given combination of the
two target locations and the initial eye position. The ME
outputs of the network are plotted along the vertical axis. The
two black dots indicate the expected MEs of the two saccades.
The output of the model encodes the first saccadic ME before
the first saccade is made, and then encodes the second saccade.
Thus the model produced two saccade commands in sequence.
The push-pull structure assures that the model carries out
multiple saccade plans sequentially.

RESPONSES OF THE HIDDEN UNITS. After training, most hidden
units in RN-I and RN-II developed localized RFs for both
visual and auditory inputs. When eye position was centered in
the orbit, the visual and auditory RFs of a given unit were

usually aligned. The RFs were very large; some of them even
occupied up to half of the input space. The responses of the
hidden units to visual or auditory targets were gain modulated
by initial eye position. Later we will discuss how these gain
fields are essential for coordinate transformations.

As in the single-memory-saccade model, most hidden units
in the double-saccade model exhibit sustained memory activity
to visual and auditory targets. Here we show the typical re-
sponse patterns of the hidden units to visual targets to make
direct comparisons with the experimental data in Fig. 6. Figure
9 illustrates five response patterns of two typical hidden units.
Figure 9, A–C, shows the responses of a unit in the RN-I
network; Fig. 9,D andE, shows the responses of a unit in the
RN-II network. Theleft panelshows the spatial arrangements
of the saccades. The RFs of the units are outlined with the
dashed areas. The initial eye positions are indicated with1
symbols. The two targets are labeled as T1 and T2, and the two
saccades are labeled as S1 and S2. The responses of the units
are shown on theright panelwith the height of the vertical bars
proportional to the responsiveness. The targets are flashed
sequentially on the first and fourth steps and the model pro-
duces the first saccade (S1) at the 10th time step and the second
saccade (S2) at the 13th time step, as indicated (top right).

The double-saccade arrangements in Fig. 9,A–C, are the
same as those in Fig. 6,A–C. In Fig. 9A, S1 is in the unit’s
preferred direction. The unit responds to the target and the
activity sustains until the postsaccadic suppression turns it off
at the time of S1. In Fig. 9B, only T2 falls in the RF and S2 is
in the unit’s preferred direction. The unit has a brief response
when T2 is presented, and this activity is suppressed by other
hidden units that encode S1 during the delay period. This unit
begins to fire after S1. In Fig. 9C, no targets fall in the RF, but
S2 is in the unit’s preferred direction. The unit still fires during

FIG. 8. Training pattern and the performance of the double-saccade model.
A: the training pattern includes 2 targets, T1 and T2, and 2 saccades, S1 and
S2. The time lag between S1 and S2 is the intersaccadic interval.B: the 1-D
motor error output of the model illustrated in the same way as in Fig. 2. The
timing of T1 and T2 and S1 and S2 are indicated on thetop.
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the intersaccadic interval, coding for S2. Like the neuron
shown in Fig. 6, the sustained responses of this model unit code
the upcoming saccade. The result of Fig. 9C is intriguing in
that a unit can be activated without a target in its RF.

Notice that the neuronal responses shown in Fig. 6 exhibited
complex dynamic patterns. For example, the activity in Fig. 6A
had a dip between the offset of the second target and the onset
of the saccade. This dip might correspond either to the second
target or to the saccade onset. The activities in Fig. 6,B andC,
also had similar dips. The model responses in Fig. 9,A–C,did
not capture these dynamic response patterns. The model units
updated their activities at a time step of 100 ms while neurons
updated their activities at an order of 1 ms. To capture those
neuronal dynamics requires a network with realistic model
neurons and stochastic processing.

Figure 9,D andE, shows the responses of a typical unit in
the RN-II network. The unit begins to respond after the onset
of T2 in its RF, and the activity is sustained. The locations of
target T2 in Fig. 9,D andE, are the same, but the initial eye
positions in the two graphs are different. The unit responds to
T2 in both cases. However, the responses are strongly modu-
lated by the eye position. The responsiveness in Fig. 9E is
weaker than that in Fig. 9D as the eye position moves in the
opposite direction to the unit’s RF from Fig. 9,D to E. The
information about the eye position is thus combined with the
target’s retinal location through this modulation. Therefore the
information about head-centered representation is implicitly
carried in the activity of a set of RN-II units.

COORDINATE TRANSFORMATIONS. One traditional question
about double-saccade tasks is how the motor vector for the
second saccade is computed, given that eye position at the time
of the second saccade is different from the time when the visual
target was flashed. How are the spatial transformations re-
quired for double-saccades carried out? To answer this ques-
tion, we examined how eye-position information is utilized by
the hidden units in the model.

We first examined the hidden units in the RN-II network.
The RF of a unit was first measured at the central eye
position. Next, for 83 8 eye positions, the responses to a
target presented in the RF were measured. Results showed
that the responses of most hidden units were modulated by
eye position. The 2-D plot of responses against different eye
positions is called gain field (GF) as reported by Andersen
et al. (1985). The GFs of RN-II units monotonically increase
in particular directions. Figure 10,A and B, shows the RF
and the GF of a typical unit. In Fig. 10A, the gray levels of
the small squares correspond to the responses of the unit to
the target presented at different locations of the input map
while the eye position is pointed at the central fixation. In
Fig. 10B, the sizes of the squares indicate the responses to
a target presented in the center of the RF for different eye
positions. Notice that the unit’s RF and its GF are in the
same direction. This is typical for the majority of the RN-II
units. Figure 10C shows the direction differences of the GF
and the RF for every RN-II unit. Most units have an aligned
RF-GF structure. The two units whose RF-GF direction
differences are close to 180° have weak responses. There-
fore they have little contribution to the network. A group of
units with the aligned RF-GF structure is well suited for the
transformation from eye- to head-centered coordinates since
this transformation requires addition of eye position and
retinal position. Previously we have demonstrated that a
population of units with aligned RF-GF contains an implicit
representation of target locations in head-centered coordi-
nates (Xing et al. 1994; Zipser and Andersen 1988).

Next we examined RFs and GFs of the units in the RN-I
network. After training, most RN-I units developed RFs for
visual and auditory inputs and monotonic GFs for eye position.
Figure 11,A andB, shows the RF and GF of a typical RN-I
unit. Unlike the one in Fig. 10, this RF and GF of the unit are
in opposite directions. Figure 11C shows the RF-GF direction
differences for all the RN-I units. The result indicates that most

FIG. 9. Typical responses of 2 hidden units in
the double-saccade model. The timing of targets
and saccades are shown on thetop of the figure.
Left: the spatial arrangements, with the dashed
area for the RFs, T1 and T2 for the 2 targets, and
S1, S2 for the 2 saccades.Right: the response
patterns.A–C: responses of a RN-I unit in 3
double-saccade tasks.D andE: the responses of a
RN-II unit in 2 tasks.
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RN-I units have an opposite RF-GF structure. The opposite
RF-GF structure is well suited to carry out the transformation
from head-centered coordinates to eye-centered coordinates.
This transformation requires subtraction of eye position from a
head-centered target location. The opposite signs for changes
of eye position and head-centered location, due to the opposite
RF-GF structure, meet the requirement of the subtractive op-
eration (Xing et al. 1994). This operation is required for com-
puting the ME of the second saccade from a distributed head-
centered representation in the RN-II network.

We further found that the visual and auditory RFs (VRFs
and ARFs) of RN-I units differed in two aspects:1) although
the VRF and ARF of a given unit usually aligned roughly, the
VRF was smaller than the ARF. Most ARFs were planar and
spread toward the edges of the auditory input map.2) The GFs
for ARFs were much stronger (with steeper slopes) than those
for the VRFs. Further examining the connection weights we
found that the weights to the RN-I units from the visual inputs
were on the average stronger than the weights from the audi-
tory inputs and the RN-II inputs. With the sigmoidal integra-
tion between the signals of eye position and target location, the
stronger connection weights to visual inputs resulted in a weak
effect of eye position on the visual responses. Due to this weak
gain modulation, no coordinate transformation occurred to
visual inputs of single visual saccades or the first visual sac-

cade in a double-saccade task. This resulted in one of the
model functions: ME5 V1.

The results of Figs. 10 and 11 show that the majority of RN-I
units have an opposite RF-GF structure and the majority of
RN-II units have an aligned RF-GF structure. This segregation
of RF-GF types is associated with the output function of the
double-saccade model. The output layer in the present model is
a single map of eye MEs. Hence the only task for the hidden
layer is to compute MEs. There might be other types of
coordinate transformations occurring in area LIP as well. The
double-saccade model here may only reflect a part of the more
complicated LIP functional structures for different sensorimo-
tor integrations. When we modified this model by having
multiple output maps in different coordinates, for example, a
ME map and a head-centered spatial map, the distribution of
RF-GF types in the hidden layer changed; the units in both
RN-I and RN-II networks exhibited aligned, opposite, and
intermediate RF-GF structures (Andersen et al. 1997).

The results in the preceding text outline the coordinate
frames used by the hidden units to encode saccadic targets in
double-saccade tasks. We further looked into the coordinates
of RN-I and RN-II network. For RN-II units, the tuning curves
to target retinal locations were plotted for different initial eye
positions. A diagram showing how the tuning curves are com-
puted is shown in Fig. 12A. The — and - - - represent retino-
topic frames at the two eye positions E and E9; the trajectories
indicate the saccades to eight target locations. The retinal target
locations in the two eye-position frames are identical. If a unit
encodes saccadic targets in retinal coordinates, the retinotopic
tuning curves for different eye positions should align with each
other. In contrast, if the unit encodes targets in motor coordi-
nates, the tuning curves should shift with eye position. Figure
12B shows the retinotopic tuning curves for a typical RN-II

FIG. 11. RF and GF of a RN-I unit. The illustrations are the same as in Fig.
10. A: the RF of a typical RN-I unit.B: the GF.C: the direction differences.
Notice that most RN-I units have GF and RF in the opposite direction.

FIG. 10. RF and GF of a RN-II unit.A: the visual RF of a typical hidden
unit measured at the central eye position. The gray level of the dashed squares
is proportional to the evoked response in the hidden unit.B: the spatial gain
field (GF) of the unit. The GFs are the responsiveness of the unit to a target
within its RF plotted against an 83 8 grid of eye positions spaced by 10°. The
gray level and the size of small squares in the graphs correspond to the
activation of the unit.C: the RF-GF direction differences for every hidden unit
in the RN-II network. The direction of a RF was calculated as the vector
direction from the center of the input map to the center of the RF. The
difference between tuning direction of a GF and the RF direction was com-
puted for every hidden unit and shown in the figure. Hidden units are listed
along the horizontal axis; the vertical axis indicates the corresponding absolute
value of direction difference. Most hidden units have direction differences
close to 0°, i.e., the aligned RF-GF structure.
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unit. In Fig. 12B, the vertical axis represents the responses and
the horizontal axis indicates retinal locations. The — and - - -
are for the two eye positions. Although the responsiveness for
a given retinal location is modulated by eye position, the two
tuning curves align well with each other. Therefore RN-II units
encode inputs of saccadic targets in retinal coordinates. These
units may correspond to the small portion of LIP neurons that
encode the memory of target locations (Mazzoni et al. 1996b).

Next we investigated the coordinates of the RN-I network.
Figure 13A shows the diagram for computing tuning curves of
RN-I units. Thex andy axes are in head-centered coordinates.
The target positions of the first saccade are indicated byJ, i.e.,
the initial eye positions of the second saccade. The trajectories
represent the second saccades. In one test, the second saccades
are made outward to eight targets, as indicated with —. In the
other test, the second saccades are made inward from a differ-
ent set of initial eye positions to the same sets of targets as in
the first test. Thus the target locations are the same for the two
tests although the directions of the second saccades toward a
given target are different in the two tests. The tuning curves of
RN-I units are plotted for each test. Figure 13B shows the
tuning curves for a typical RN-I unit. The responsiveness of the
unit is plotted against the retinal location of the second sac-
cadic targets; the — and - - - are for the two tests. The results
show that the two tuning curves do not align in retinotopic
coordinates. In Fig. 13C, the same set of data in Fig. 13B is
plotted against eye MEs. The two ME tuning curves align well
with each other. Therefore RN-I units encode saccadic targets
in motor coordinates. These units may correspond to the ma-

jority of LIP neurons that encode MEs of saccades (Mazzoni et
al. 1996b).

Theoretically, eye-position modulation with the aligned
RF-GF structure yields a head-centered representation of target
locations in the distributed activity of RN-II units. This head-
centered representation is fed into the RN-I network after the
first saccade. With the opposite RF-GF structure in the RN-I
network, the new eye-position information is subtracted from
the head-centered representation to yield a ME of the second
saccade. Hence RN-I units encode saccadic targets in motor
coordinates. Therefore the model carries out coordinate trans-
formations required for double saccades in the following steps:
the RN-I network transforms target locations into the repre-
sentation of MEs through the opposite RF-GF structure (for
auditory targets), and the RN-II network provide the RN-I
network with a head-centered representation of the second
target through the aligned RF-GF structure. Thus the RN-I
network encodes motor plans of saccades, while the RN-II
network represents head-centered information implicitly
through distributed coding of RN-II units.

D I S C U S S I O N

The mechanisms for programming memory saccades and
sequential saccades remain unclear to neurophysiologists. A
number of computational models of saccade generation have
been proposed. Dominey and Arbib (1992) proposed a cortical-
subcortical model of the control of saccadic eye movement and
suggested that the parietal cortex may dynamically remap the

FIG. 12. Tuning curves of a typical RN-II unit.A: the method for comput-
ing retinal location tuning curves for different eye positions. — and - - -,
retinotopic frames at the 2 eye positions, E and E9. For each eye position, the
arrays indicate the saccades to 8 retinal locations. The retinal locations are
identical for the 2 eye positions.B: the tuning curves of a typical RN-II unit.
The responsiveness of the unit (the vertical axis) is plotted against target retinal
locations (the horizontal axis). — and - - -, the two initial eye positions,
respectively. The 2 tuning curves align well with each other.

FIG. 13. Tuning curves of a typical RN-I unit.A: the diagram for comput-
ing tuning curves in double-saccade tests.J, retinal locations of the 1st target,
i.e., the initial eye positions of the 2nd saccade. The arrays represent the 2nd
saccades. —, saccades to 8 target locations in 1 test; - - -, the saccades that are
in the opposite direction but end at the same locations as in the 1st test.B: the
tuning curves for a typical RN-I unit. The responsiveness of the unit is plotted
against the retinal location of the 2nd saccadic targets; — and - - -, for the 2
tests, respectively. The 2 tuning curves do not align on the retinotopic space.
C: the same set of data as in Fig. 13B is plotted against saccadic motor errors
(the horizontal axis). The 2 motor error tuning curves align well with each
other. Thus the unit encodes saccades in motor coordinates.

660 J. XING AND R. A. ANDERSEN



target locations in saccade ME maps to program double sac-
cades. The network model developed by Droulez and Berthoz
(1991) showed that target position could be memorized in a
sensory map and updated with eye-movement signals. Krom-
menhoek et al. (1993) trained a neural network to compute
MEs using information about eye position. These computa-
tional approaches yield valuable insights into memory sac-
cades. On the other hand, the frameworks in these models did
not correspond well to known neurophysiological data. Given
that LIP neurons can withhold their saccade-related activity
and participate in programming double saccades, the network
model in this report studied the memory activity in area LIP for
saccadic eye movements. With the implementation of the sin-
gle-purpose rule in the training process, the network developed
lateral excitation-inhibition (the push-pull structure) that was
essential to memory and sequential saccades. The simulated
neurons in our model exhibited properties similar to those
recorded in area LIP. After training to make double saccades,
the model carried out the coordinate transformations required
to program double saccades by the means of gain modulations.
In our model, one group of neurons maintain the sensory
memory of saccadic targets, while the other group of neurons
encode the motor plan of an impending saccade. Thus coding
the motor commands of double saccades is achieved by dif-
ferent neuronal populations rather than by dynamically remap-
ping the same neuronal population.

One prediction of the model is that neurons corresponding to
the memory buffer RN-II respond to the second target but not
the first one. Mazzoni et al. (1996b) found that 16% of LIP
neurons encoded the location of the second target in a memory-
saccade task. These cells were referred as the “sensory mem-
ory” cells. It would be interesting to test experimentally
whether these cells encode only the second target or any visual
stimuli within their RFs. Furthermore the model predicts that
the responses of RN-II neurons are gain modulated by the
initial eye position. Due to the push-pull structure, the activity
of RN-II neurons is not affected by the new eye position. This
remains to be tested experimentally.

Push-pull structure

Examining data from various kinds of delayed-saccade ex-
periments, we found a common feature in the response patterns
of LIP neurons—once a neuron is engaged in a saccade com-
mand, its activity is maintained irrespective of further stimuli;
the neuron starts to respond to another stimulus only after the
saccade being encoded is completed or the intention of the
saccade is dismissed by some high level command. We called
this feature single-purpose. This feature is essential for the
behaviors of a motor system. The eyes can never make sac-
cades simultaneously to two different spots.

The single-purpose feature is used as a constraint for the
training process of our networks. This constraint results in the
push-pull structure, i.e., excitatory connections between units
with similar preferred saccadic directions and inhibitory con-
nections between units with dissimilar preferred directions.
Such an excitation-inhibition structure is the neuronal basis for
the single-purpose feature. In the extended model of the dou-
ble-saccade system, the push-pull structure allows the model to
program two saccadic commands sequentially, rather than mix-
ing the two commands into one. Therefore the excitation-

inhibition connections ensure that LIP encodes the next
planned saccade.

Ideally, a push-pull structure suppresses any irrelevant stim-
uli that differ from the target location. However, through
simulation we found that responses to stimuli close to the target
were often sustained rather than suppressed. The minimal
distance for an irrelevant stimulus to be suppressed varied from
unit to unit but was roughly in an order of about 10°. Within
this distance, the output memory activity represented a ME that
was a weighted average between the irrelevant stimulus and the
target. The function of the connection weights in Fig. 5A
reflected this inaccuracy: Excitatory connections could occur to
PDs that are 10–20° apart. Several reasons contribute to this
inaccuracy: the tuning of the hidden units is broad; the limited
number of the hidden units prevents precise excitatory connec-
tions; and the training samples of the stimulus locations are
often more than 10° apart. We expect that using a large set of
hidden units and finer spaced training stimuli, or an attention
mechanism, would improve the accuracy of the push-pull
structure.

A number of neural network studies have used a push-pull
structure as a memory-storage mechanism (Grossberg and Le-
vine 1975; Seung 1996; Zhang 1995). Typically, adjacent units
in these networks excite each other while distant units inhibit
each other. Such an arrangement could prevent recurrent ac-
tivities from spreading to the whole network. Thus a push-pull
mechanism also enforces the stability of a recurrent network.
Salinas and Abbott (1996) recently proposed another func-
tional role of the push-pull structure in the parietal cortex. They
found that neurons in a recurrently connected network with
push-pull connections could perform a product operation on
additive synaptic inputs. The resulting multiplicative gain
modulation is important for coordinate transformations in the
parietal cortex. In our model, the push-pull structure emerged
as the result of the single-purpose feature. Moreover, the ex-
citation and inhibition were organized according to the pre-
ferred directions of the units, rather than the geometric posi-
tions. Goldman-Rakic (1995) observed a similar lateral
inhibition structure in the opponent memory field of neurons in
the frontal cortex. Schlag et al. (1998) found that, in the FEF,
cells that encoded similar eye movements mutually excited
each other while silencing those that would produce conflicting
eye movements. Since the single-purpose feature might be
common for cortical areas involved in motor planning, it is
likely that the push-pull structure is a principle applicable to
these cortical areas.

An analogy to the single-purpose feature is the winner-take-
all mechanism. The latter has been widely applied to the
models of visual search processes (Braddick 1997; Ferrera and
Lisberger 1995; Lee et al. 1999). In a visual search task, a
target is searched among a number of distractors. A winner-
take-all mechanism allows the neurons representing the target
and the distractors to compete against one another. Attention
serves to bias the outcome of this competition toward the
direction of the selected target. As a result, the neuronal re-
sponse to the target remains and the response to the distractors
is suppressed. Salzman and Newsome (1994) also proposed
that a winner-take-all mechanism existed in the motion cortex
(area MT and MST). When more than one motion cue was
presented, monkeys chose the direction encoded by the largest
signal in the representation of motion direction. Braddick
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(1997) suggested that local motion detectors use winner-take-
all interactions in global motion analysis.

The single-purpose feature and the winner-take-all mecha-
nism are similar in that both generate only one single output
representation. The latter evokes neuronal competition based
on the context of stimuli and enhances the response to the
target stimulus through attention. Such a mechanism is not
suitable for area LIP because LIP neurons are generally insen-
sitive to stimulus context and thus do not support a competition
process. The target to be represented in LIP is chosen by motor
intention and is not the result of an attention-biased competi-
tion. The winner-take-all mechanism handles spatial conflicts
in visual selection. The single-purpose feature assures no con-
flicts in a temporal sequence of motor plans. Neurophysiolog-
ical data support our assumption that a single-purpose feature
exists in area LIP. It would be interesting to test this assump-
tion further by recording the responses of LIP neurons to a
target and many distractors presented simultaneously.

Coordinate transformations

A traditional question about planning double saccades is
how the motor command of the second saccade is computed.
Two hypotheses have been proposed. One hypothesis is head-
centered coding (Robinson 1975; Sparks and Mays 1983): the
absolute target location in head-centered coordinates is com-
puted and stored, and then the new eye position after the first
saccade is subtracted. With this hypothesis, one would expect
to find neurons that encode visual targets explicitly in head-
centered coordinates. However, physiological studies have
largely failed to find such neurons. Most LIP neurons have
retinal RFs with their responses modulated by eye position.
The other hypothesis is retinotopic coding, also called vector
subtraction (Bruce and Goldberg 1985; Scudder 1988): the
retinal location of the target is stored and then the change of
eye position is subtracted. This hypothesis requires neurons
that explicitly encode the change of eye position.

The simulation results of this report suggest a third possi-
bility: instead of computing explicit head-centered target loca-
tions or the change of eye position, LIP neurons utilize eye
position with the use of GFs to carry out coordinate transfor-
mation through the distributed activity of many neurons. In the
double-saccade model, information about the second target
location is combined with the current eye-position signal
through aligned RF-GF gain modulation to form a distributed
head-centered representation. After the first saccade, the new
eye position comes in and is combined with the head-centered
representation through the opposite RF-GF structure so that the
ME of the second saccade is computed. This model does not
require individual neurons to encode target locations in explicit
head-centered coordinates. The presence of GFs could account
for the computation of double saccades. Moreover, the exper-
imental results by Li et al. (1995) suggested that a distributed
head-centered representation of targets might be maintained in
LIP for programming sequences of eye movements. Using
reversible lesions of LIP, Li et al. found that the monkeys
depended on the new eye position more than the retinal vectors
to make the second saccade. Thus this model fits current data
well.

Theoretically, coordinate transformations suggested by the
first two hypotheses above can be carried out by shift circuits.

Quaia et al. (1998) proposed a shift circuit to simulate RF
remapping in LIP, in which the FEF neurons shifted the RFs of
the LIP neurons. However, the large RFs and the distributed
coding feature of parietal neurons make it difficult for a precise
shift circuit to work. The modeling results in this report show
that the gain modulation is essential to carry out the coordinate
transformations in area LIP. Using this strategy, neurons may
remain in retinotopic coordinates for visual stimuli. With eye-
position modulation, the distributed activity of these neurons
can represent the stimuli in other coordinates. Varying RF-GF
structures carries out different kinds of transformations. Hence
the gain modulation along with distributed coding is an effi-
cient way to achieve sensorimotor transformations without
using complex shift circuits. Other theoretic studies also re-
vealed the importance of GF properties in coordinate transfor-
mations. Goodman and Andersen (1990) analytically demon-
strated that an aligned GF and RF relationship was required for
transformations from oculocentric to craniocentric coordinates.
A similar mechanism of eye-position modulation in the sac-
cadic system was studied by Krommenhoek et al. (1993, 1996).
They developed a neural network in which retinal signals and
an efference copy of eye position could be remapped to a ME
map in two steps: distributed coding of head-centered target
position at one level and of ME in eye-centered coordinates at
another stage.

RF remapping versus ME coding

Experimental data demonstrate that the memory activity of
LIP neurons encodes saccadic eye movements (Snyder et al.
1997). Furthermore it has been shown that LIP neurons encode
motor intention, irrespective of the actual execution of the
planned movements (Bracewell et al. 1996; Snyder et al.
1997). The simulated LIP neurons in our models indeed encode
the impending saccade. On the other hand, Duhamel et al.
(1992) proposed that LIP neurons encoded sensory stimuli
instead of saccades. In their experiment, as illustrated in Fig.
14A, the monkey was required to make a saccade to a remem-
bered target, and this saccade would bring a stimulus onto the
RF of the LIP neuron being recorded. It was found that the
neuron responded to the stimulus outside its classic RF when
an impending saccade brought the stimuli into the RF. Some
neurons became active before the stimulus was brought into the
neurons’ RFs by the saccades. Duhamel et al. thus concluded
that the RF of the neuron transiently shifted with the eyes to the
retinal location at which the stimulus could excite the neuron.
This hypothesis is diagrammatically illustrated in Fig. 14B.
During fixation, the representation of the visual scene was
stable (left). Immediately before or during the saccade the
cortical representation shifted into the destination of the in-
tended saccade. The neuron thus began to respond to the
stimulus at a new retinal location (middle). After the eye
movement, the cortical representation shifted back to match the
visual inputs so that the neuron continued to respond to the
stimulus (right).

Quaia et al. (1998) proposed a model to explain the observed
shifts of RFs. In their model, a group FEF neurons carry the
signal about impeding saccades; LIP phasic-tonic neurons have
stable local RFs and LIP phasic cells have shifting RFs. If a
FEF neuron and a LIP phasic-tonic neuron are active at the
same time, a LIP phasic neuron, whose RF is equal to the
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difference of the RF of the LIP phasic-tonic neuron and the
motor field of the FEF neuron, is activated. All pairs of LIP
phasic-tonic neurons and FEF neurons, whose RF/motor field
difference is equal, must be connected to the same LIP phasic

neuron. Therefore the RFs of the LIP phasic neurons are
shifted with impending saccades. Such a model requires a
specific connectivity: precise pairings between LIP and FEF
neurons. It also requires specific computations at the dendritic
level, i.e., a multiplication between cells in a pair and a logic
OR computation between different pairs to the same LIP phasic
cell. Both the connectivity and the computations are biologi-
cally difficult to implement. Moreover, although the model
explained RF remapping, it did not account for the coordinate
transformations in sequential saccades.

It is interesting to see how our model responds to the
paradigm of Fig. 14A. In Fig. 9C, the hidden unit responded to
the second target even though the target never appeared in the
unit’s RF. This response appeared as if the RF of the unit
shifted to capture the second target, while in fact there was no
RF shift and the response was merely encoding the impending
preferred saccade. Figure 14C illustrates the model results in
the same experiment. After the target onset, some neurons fire
to the first intended saccade, and the neuron being recorded has
no response (left) since its RF is not in the preferred direction.
Next, after the command to make the saccade is issued, the
on-going activity is suppressed by postsaccadic suppression.
The network computes the ME of an intended saccade to the
stimulus based on the inputs of the new eye position and the
information about the stimulus location. As a result, the neuron
under recording becomes active since its PD is in the direction
of the next intended saccade (middle). Finally, the first saccade
is completed, and the neuron continues to fire for the next
intended saccade, although this saccade may not actually be
executed. Therefore the hidden units in the model can encode
stimuli outside the unit’s RF using dynamically updated infor-
mation about eye position. In this model, the cortical represen-
tation does not shift toward the stimulus and then shift back.
Instead, the activity of one group of cells goes up while the
others come down for a new saccade plan. Thus different
populations of neurons are engaged and disengaged rather than
individual neurons shifting their retinal RFs back and forth.

Duhamel et al. (1992) reported that 44% of LIP neurons
became active before the saccade brought the stimuli into the
neurons’ RFs. Our model can account for these predictive
responses. Before the first saccade is made, the RN-I network
may already begin to compute the ME of the second saccade
using the information about the new eye position. Therefore
the units coding for the second saccade could become active
before the first saccade. Thus the observed predictive remap-
ping could be the result of the sequential activation of different
populations of LIP neurons rather than jumping RFs. There is
experimental evidence that signals for new eye positions ap-
pear in some LIP neurons before the beginning of a saccade (C.
Li, B. Breznen, and R. A. Andersen, unpublished data). In
addition, psychophysical studies by Dassonville et al. (1995)
and Schlag and Schlag-Rey (1995) indicated that spatial local-
ization during saccades was largely based on updating of the
internal representation of eye position.

Modeling multiple sequential saccades

The present model only simulated single and double sac-
cades. How would the model handle more than two saccadic
targets in a sequence? Our double-saccade model can be
viewed as a schematic version of a model of multiple-sequen-

FIG. 14. Illustrations of predictive responses before saccades.A: the exper-
imental paradigm used by Duhamel et al. (1992) to test the predictable activity
in LIP. The monkey was asked to make a saccade to the target after the fixation
light went off. A stimulus outside the RF of the recorded neuron was presented
during the fixation, and the saccade would bring the stimulus onto the neuron’s
RF. The neuron predictably responded to the stimulus before the saccade.B:
the diagram of transient RF shift accounting for predictable responses. The
solid-lined box corresponds the cortical representation of the space, the broken
lines indicate the retinal coordinates. The RF of the neuron being-recorded is
illustrated with the dashed area. The black dot indicates the response to the
stimulus.Left: the neuron has no response because the stimulus is outside the
RF. Middle: the neurons begin to respond before the saccade because the RF
shifts to overlap with the stimulus.Right: the situation after the saccade. The
RF moves back and the stimulus is inside the RF due to the eye movements.
Thus the neuron continues responding to the stimulus. The neuron’s response
and the eye movement through time are illustrated on thelower part of the
graph.C: the diagram of neurons coding for the intended saccades. The black
dot represents the response of the neurons.Left: other neurons fire for the
intended saccade, the neuron being-recorded has no response.Middle: the
command for the saccade is issued so that the on-going activity is suppressed
by postsaccadic suppression.Right: the 1st saccade is completed and the
neuron continues to fire for the next intended saccade, although this saccade
may not actually be executed. The dashed rectangle indicates that the infor-
mation about the new eye position can reach LIP before, during, or after the
saccade is made. In both models, the neuron can predictably fire before the
saccade is made. The 1st one requires remapping RFs; the 2nd one requires
predictably updating eye positions.
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tial-saccades. In this report, we focused our model on how the
coordinate transformations of two sequential saccades were
carried out. We could extend the model to handle multiple
saccades in the following two ways: the model has more
memory buffers each holding the memory of every additional
saccade and the input layer of the model could correspond
either to sensory inputs or to inputs from a memory system.
The first possibility is perhaps too rigid and the architecture is
difficult for brain to implement. In the second possibility, the
target locations and the orders of the presentation are held in
the memory system while RN-I and RN-II networks carry out
the coordinate transformations for the impending saccade. Be-
havioral and physiological evidence supports this possibility.
Training monkeys to perform more than two sequential sac-
cades is difficult. Barone and Joseph (1989) were able to train
monkeys to make sequential saccades to three fixed target
locations. However, they only observed prefrontal neurons that
responded to the first target or the second target, but no neurons
responded to the third target. The result suggested that the
memory for more than two sequential targets was not directly
handled by the parietal or the prefrontal cortex.

In summary, the models in this report capture the important
characteristics of LIP neurons and provide insights into the
mechanisms of LIP in programming eye movements. By opti-
mizing the network to implement various saccadic tasks, two
important properties emerge from the model: push-pull recur-
rent connections and opposite/aligned GF structures. These
properties are the basics for programming memory saccades
and sequential saccades. The consistency of simulated results
and current experimental data suggests that the models are well
suited to describe the sensorimotor processing in area LIP and
thus can be used as a framework to guide future experiments in
understanding the neural functions of LIP.
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