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Enhanced control of a brain–computer 
interface by tetraplegic participants via 
neural-network-mediated feature extraction
 

Benyamin Haghi1,8 , Tyson Aflalo    2,8 , Spencer Kellis    2,3,4, Charles Guan2, 
Jorge A. Gamez de Leon2, Albert Yan Huang    1, Nader Pouratian5,6, 
Richard A. Andersen    2 & Azita Emami    1,7 

To infer intent, brain–computer interfaces must extract features that 
accurately estimate neural activity. However, the degradation of signal 
quality over time hinders the use of feature-engineering techniques to 
recover functional information. By using neural data recorded from 
electrode arrays implanted in the cortices of three human participants, here 
we show that a convolutional neural network can be used to map electrical 
signals to neural features by jointly optimizing feature extraction and 
decoding under the constraint that all the electrodes must use the same 
neural-network parameters. In all three participants, the neural network 
led to offline and online performance improvements in a cursor-control 
task across all metrics, outperforming the rate of threshold crossings 
and wavelet decomposition of the broadband neural data (among other 
feature-extraction techniques). We also show that the trained neural 
network can be used without modification for new datasets, brain areas and 
participants.

Brain–computer interfaces (BCIs)—technologies that communicate 
directly with the brain—can improve the quality of life of millions of par-
ticipants with brain circuit disorders1. Motor BCIs are among the most 
powerful examples of BCI technology: ongoing clinical trials implant 
microelectrode arrays into motor regions of tetraplegic participants. 
Movement intentions are decoded from recorded neural signals into 
command signals to control a computer cursor or a robotic limb2–7. 
However, these systems fail to deliver the precision, speed, degrees 
of freedom and robustness of control enjoyed by motor-intact indi-
viduals. To enhance the overall performance of the BCI systems and to 
extend the lifetime of the implants, newer approaches for recovering 
functional information of the brain are necessary.

Part of the difficulty of improving BCI control is the unconstrained 
nature of the design problem. Such design can be fundamentally mod-
elled as a data science problem: the mapping from brain activity to 
motor commands must be learned from data5,8,9 and must find adequate 
solutions to the unique challenges of neural interfaces, such as limited 
and costly training data, low signal-to-noise ratio (SNR) predictive 
features, complex temporal dynamics, nonlinear tuning curves, neural 
instabilities and the fact that solutions must be optimized for usability, 
not offline prediction10–18. These properties have made end-to-end 
solutions (for example, mapping 30 kHz sampled array recordings to 
labelled intention data) intractable. Therefore, most BCI systems sepa-
rate the decoding problem into two distinct phases: (1) transforming 
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BCI systems rely on conventional feature extraction approaches such as 
spike band powers, threshold crossings (TCs) and wavelets (WTs)4,17,19–30. 
However, most of these feature extraction techniques, including TCs 
and WTs, are likely suboptimal as they use simple heuristics or were 

electrical signals recorded from implanted electrode arrays into neural 
features and (2) learning parameters that map neural features to control 
signals. Despite the increasing number of decoding methodologies, 
including those incorporating neural networks as decoders, current 
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Fig. 1 | Overview of the study’s methodology. a, Each single electrode records 
the broadband data that consist of various neural activities (for example, somata, 
dendrites, axons and so on). Neurons close to the electrode will generate stronger 
single-unit activities compared with the neurons far from the recording 
electrode, which record MUAs. The electrode records noise as the distance of the 
neurons increases. b, Schematic architecture enabling FENet training illustrating 
separate processes for feature generation (EEE→→→N̂NN) and neural decoding ( N̂NN→→→B̂BB). In 
blue, feature extractors estimate neural activity N̂NN  from recorded electrical 
activity E. This system has fixed parameters for all the electrodes, tasks, sessions 
and participants. In orange, a neural decoder estimates the behaviour B̂BB from 
estimates of the neural activity N̂NN . The session-specific neural decoder is learned 
for each session. c, FENet implementation including M − 1 back-to-back feature 
engineering modules, leaky ReLU and adaptive average pooling. d, A single FENet 

feature engineering module with zero padding, 1D convolutional filters, a leaky 
ReLU activation function and adaptive average pooling. e, The overall 
architecture of the closed-loop BCI system. First, the data are recorded from the 
Utah microelectrode arrays (NeuroPort, Blackrock Microsystems) implanted on 
the surface of the brain by using two neural signal processors (NSPs). Then, neural 
signal processors send the recorded neural data to the Blackrock microsystem to 
preprocess the raw data. After the pre-processing, the decode PC extracts the 
appropriate neural features and decodes the neural features to the computer 
cursor movements for the under-study task. f, A research participant controls a 
cursor in a BCI in centre-out task (top) on a unit circle and a grid task (bottom) 
which includes 64 targets on an 8-by-8 square. For each trial, a computer-
generated target appears randomly in red.
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developed in other domains and simply applied to the neural signals. 
Therefore, these methods may perform sub-optimally compared with 
the data-driven methods that may better account for the specific bio-
physical processes giving rise to the dynamics of interest in the raw 
electrical recordings. The process of learning an optimal mapping 
from raw electrical recordings to neural features has not been explored.

In this Article, we report the development of an algorithm to opti-
mize the information content of neural features and demonstrate 
improvements in human participants participating in intracortical BCI 
clinical trials. We designed our algorithm with several considerations: 
(1) the new method should easily drop into current decoding pipelines; 
(2) the method should generalize across electrodes, participants, 
brain areas and implant duration without parameterization; (3) the 
method should run real time on standard computers and ultimately be 
deployable in low-power application-specific integrated circuits; (4) 
the method should not substantially increase the complexity or amount 
of training data required for the subsequent decoding algorithm that 
maps the extracted neural features to the participant’s intent. To ful-
fil these requirements, we developed FENet (for ‘feature-extraction 
network’), a compact one-dimensional (1D) convolutional network 

that is specifically trained to extract the informative neural features 
from the broadband neural recordings for the BCI applications. The 
aim was to develop a constrained end-to-end training architecture. 
This architecture was structured to maximize the amount of informa-
tion contained in the extracted neural features while abstracting away 
the parametric relationship between the extracted features and the 
decoded participant behaviour (Fig. 1b).

In addition, a retrospective analysis over years of recordings 
showed that FENet generates a higher-magnitude peak-to-trough 
within tuning curves and achieves improved trial separability com-
pared with other feature extraction techniques over the entire life-
time of the array. FENet demonstrated a significant improvement in 
cross-validated coefficient of determination (R2) compared with TCs, 
as the current standard feature extraction techniques in lab works with 
human participants4,6,22,26,27,31, and WTs, which have also demonstrated 
performance improvements in our offline analysis and in the recent 
studies on BCIs20,29, across multiple participants and through the life-
time of the arrays. Furthermore, FENet generalized well across cortical 
brain regions, participants and tasks, demonstrating its ability to serve 
as a drop-in replacement for other feature extraction techniques. 
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Fig. 2 | Closed-loop performance evaluation for JJ. Online trajectories 
comprising one movement out and back to each of eight targets in a centre-out 
paradigm. This figure illustrates the effectiveness of a linear decoder when it 
performs on FENet features, compared with the TC features (left panel) and 
the WT transform features (right panel). At the top, left and right figures show 
trajectories using the other feature extraction technique and FENet-based 
features, respectively. Trajectories were sampled from the same experimental 
run, as part of an interleaved-block design. There is high daily variability in 
control quality using TCs. In addition, due to the considerable instability 
encountered during the operation of WTs, we had to manually introduce bias in 
both the x and y directions to prevent the cursor from going beyond the screen 
after prolonged use. a,i, Results from the best recent day using TCs (a), WTs  
(i) and FENet. b,j, Results for another experimental session with poor TCs  
(b) and WTs (j) performances. TC control quality has degraded substantially, 
while FENet has largely preserved performance. Furthermore, the control 
achieved through the use of WTs has shown inconsistent stability between 
sessions 5 years after implantation. c,d,e,k,l,m, The averaged angular error  
(c,k), path efficiency (d,l) and time to target (e,m) over the closed-loop sessions 

as the closed-loop control metrics, comparing FENet with TC (c,d,e) and WT 
(k,l,m). Instantaneous angular error captures the angle between the vector 
pointing towards the target and the instantaneous velocity of the cursor. Path 
efficiency is measured as the total distance travelled en route to the target 
normalized by the straight-line distance from the starting location to the target. 
Distance to target (mean ± 95% confidence interval) was used to quantify cursor 
responsiveness to the participant’s intent. Here, latency from target onset to 
goal-directed movements is shorter for FENet-based features compared with TCs 
and WTs. f,n, The averaged distance to target for the centre-out task, comparing 
FENet with TC (f) and WT (n). To account for variations in trial lengths, the figure 
depicts the average distance to the target across multiple trials, generated using 
the duration of the smallest trial as a reference. Consequently, the figure does not 
extend in time until the target has been reached. g,h,o,p, The success rate  
(g,o), and the bit rate (h,p) (Methods) within an 8-by-8 grid task (for FENet 
versus TCs (g,h), t = −11.850, P < 0.0001; for FENet versus WTs (o,p), t = −4.252, 
P < 0.0001). Success was measured as the ability to move the cursor to and hold a 
target (0.5 s hold time) within 4 s. bps, bits per second.
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Finally, the population-level analysis demonstrated that FENet pre-
serves the representational structure and temporal dynamics of sorted 
neural populations and, thus, provides an accurate measure of brain 
activity. Due to the inherent variability in absolute performance of BCI 
systems across participants, labs, tasks, and implant sites and age, we 
use within-participant comparisons to assess the efficacy of FENet. 
This approach aligns with current recommendations for evaluating 
BCI performance and underscores the importance of considering 
participant-specific factors when interpreting results5,32–35. Taken 
together, FENet can improve the efficacy of implantable electrode 
systems while delivering improved performance and ease of use.

Fluctuations in electrical activity recorded at an electrode come 
from a diversity of sources36 (Fig. 1a). Typically, a neural decoding 
pipeline starts with extracting a particular neural feature of interest, 
which has historically been the number of neural spikes per unit of 
time. However, recent work has shown that alternative ways of process-
ing broadband electrical recordings (for example, WT decompositions 
or power) can improve the information content of extracted 
features19,20,29. We hypothesized that a custom-tailored algorithm built 
around the statistics of neural signals may enable further improve-
ments in extracting informative neural features. In general, the BCI 
problem can be formulated as learning a mapping from electrical 
fluctuations E to behaviour B. However, as mentioned above, the decod-
ing problem is made tractable by splitting the problem into two stages: 
first mapping E to estimates of neural activity N and, then, from N to B 
(Fig. 1b). However, as we have no direct knowledge of N, we attempt to 
recover ̂N , the estimate of neural state that optimizes estimates of the 
behavioural state. To accomplish this, we adopt the constrained 
end-to-end architecture of Fig. 1b. We fix parameters mapping E to ̂N  
across all electrodes and recording sessions, while allowing the map-
ping between the estimate of the neural activity ̂N  to behaviour ̂B (for 
example, cursor velocity) to be electrode and session dependent. This 
approach assumes that the same transfer function can be applied to 
all electrodes and is independent of the relationship between the neural 
state and the behaviour. Sharing weights across electrodes reduces 
the number of parameters, improves interpretability and encourages 
solutions that generalize to new electrodes with distinct tuning proper-
ties. We designed FENet as a multi-layer 1D convolutional architecture 
for our feature extraction module (the mapping from E to ̂N ; Fig. 1c,d 
and Extended Data Fig. 1b,c) while using a linear mapping that decodes 
the estimates of neural activity, ̂N , to the behaviour, ̂B. The use of a 
linear mapping was designed to encourage maximum learning within 
our feature extraction network.

We trained our feature extraction network (FENet) on data col-
lected from electrode arrays implanted in motor and posterior parietal 
cortices of paralysed humans participating in the BCI clinical trials. 
Training data consisted of broadband recordings sampled at 30 kHz 
rate recorded while participants attempted movements in a centre-out 
task (Methods and Fig. 1e,f). The amount of training data, hyperparam-
eters, the importance of FENet extracted features per electrode and 
the computational cost of FENet per evaluation for different FENet 
architectures were explored in Extended Data Figs. 6 and 7.

Results
FENet improves closed-loop control
We developed FENet to improve the closed-loop control of external 
devices. Figure 2 compares BCI-controlled cursor movements using 
FENet-based neural features, threshold-based neural waveform cross-
ings (TCs) and WT transform for participant JJ (Methods). TCs represent 
the current standard for closed-loop control and is the method that 
underlies best-in-world closed-loop control performance4,6,22,26,27,31,34. 
WTs have also demonstrated performance improvements in recent 
studies on BCIs20,29. JJ was instructed to guide a BCI-controlled cursor 
towards visually cued targets on a computer screen. Testing was done in 
both a ‘centre-out’ environment, in which targets alternated between a 

central location and one of the eight pseudo-randomly chosen periph-
eral locations (Fig. 1e,f, top), and a ‘grid’ environment, in which the 
target was pseudo-randomly chosen from an 8-by-8 grid of targets 
(Fig. 1f, bottom). The data used to train the linear decoders mapping 
neural features to behaviour were collected either in an open-loop 
setting or using interleaved blocks of closed-loop data that included 
use of both FENet features and TCs/WTs to minimize the chances that 
training data would bias performance in favour of FENet or TCs/WTs. 
All experiments were double-blind using block-interleaved scheduling 
(see Extended Data Fig. 1a for a schematic illustrating the training and 
testing protocols).

Neural decoders using FENet-based features outperformed 
TC-based and WT-based features across all metrics. The difference 
in performance is visually evident when viewing the two approaches 
in our interleaved-block design (Supplementary Videos 1–4) or 
when visualizing the trajectories across movements (Fig. 2a,b,i,j). 
FENet-based features improved cursor trajectories as measured by 
reduced instantaneous angular error, improved path efficiency and 
reduced time to target (Fig. 2c,d,e,k,l,m). Furthermore, FENet improved 
the responsiveness of the cursor to the participant’s intent, decreasing 
the latency between target onset and the time the cursor first moved 
towards the target (Fig. 2f,n). Improvements on both fronts resulted 
in substantial improvements in overall task performance during the 
grid task, including success rate and bit rate (for FENet versus TCs, 
t = −11.850, P < 0.0001, and for FENet versus WTs, t = −4.252, P < 0.0001) 
(Fig. 2g,h,o,p). Finally, as part of our double-blind experimental design, 
we asked the participant to report which of the two methods he pre-
ferred. In every instance, the participant reported a strong preference 
for the FENet-based decoder.

Baseline performance with TCs was poor during testing. This poor 
performance was the consequence of substantial degradation in the 
quality of the neural signals over the lifetime of the recording arrays37 
(Extended Data Fig. 2). Furthermore, the performance of WTs showed 
instability, necessitating manual adjustment of bias in both the x and 
y directions to enable participants to maintain stable control over the 
cursor and successfully complete the trials while using WTs. As shown 
in the next section, we find that FENet can improve the performance 
across the lifetime of the array (even when TCs and WTs produce excel-
lent performance) and across the participants.

FENet provides improved open-loop decoding performance
Direct comparison in closed-loop testing is ideal, but opportunities 
for such testing are relatively limited. To increase the scope of com-
parison across time and feature extraction techniques, we evaluated 
the ability of FENet to reconstruct the movement kinematics using 
previously collected neural data recorded from implanted electrode 
arrays. In particular, we used data collected during an ‘open-loop’ 
paradigm, in which the participant attempted movements as cued by 
a computer-controlled cursor performing the centre-out task. Given 
that FENet is a neural network, and neural networks have the potential 
to overfit, the data that we used to train the FENet was 100% separate 
from the validation and the test data. Figure 3a,b shows the reconstruc-
tion performance of a linear decoder operating on TCs, WTs and FENet 
extracted features. These figures also compare the performance of 
FENet with other types of feature, including multi-unit activities 
(MUA)20,38, high-frequency local field potentials (HFLFP)4,34 and the 
combination of FENet and TCs with HFLFP. As FENet seeks to provide 
a new solution to the feature extraction process, we held the feature 
decoding stage constant across all feature extraction techniques to 
minimize confounds to interpretation. Comparisons were made for 
two human participants, JJ and EGS, on 54 recorded sessions spanning 
2019 to 2022 for JJ and on 175 recorded sessions spanning 2014 to 2018 
for EGS. Figures 3b and 4 upper panels show that for JJ, FENet improves 
the average cross-validated coefficient of determination (R2) (Meth-
ods) of TCs (t = −19.368, P < 0.0001) and WTs (t = −17.338, P < 0.0001) 
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Fig. 3 | Open-loop multi-electrode performance. Performance for FENet, TC 
events, Debaucheries WTs, MUA, HFLFP and the combination of FENet and TCs 
with HFLFP (FENet–HFLFP and TCs–HFLFP). a,b, The research participant JJ over 
54 recorded sessions spanning from 2019 to 2022 (shaded region shows the 
closed-loop sessions) per session performance (a) and averaged performance 
(b). c,d, The research participant EGS over 175 recorded sessions spanning from 
2014 to 2018 per session performance (c) and averaged performance (d). The 

dashed lines separate the sessions of different years. The band in each time series 
shows the range of its 95% confidence interval of a locally estimated scatterplot 
smoothing84,85 fit. e,f, Single experimental session 20190507 example (fourth 
session in a) of reconstructed instantaneous velocity of participant JJ showing 
reconstructions from FENet, WTs and TCs for horizontal (Vx) (e) and vertical (Vy) 
(f) dimensions. The black line shows the ground-truth target velocity, and the 
coloured lines show the reconstruction of the feature extraction techniques.
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from 0.27 and 0.43 to 0.55, respectively. Figures 3d and 4 lower panels 
show that for EGS, FENet improves the average cross-validated R2 
value of TCs (t = −39.012, P < 0.0001) and WTs (t = −28.281, P < 0.0001) 
from 0.13 and 0.15 to 0.30, respectively. Figures 3a,c and 4 show that 
these improvements were found for each individual recording session 
as well. Figure 3e,f shows example reconstructions of the cursor veloc-
ity in x and y directions for a session recorded for JJ in 2019 and high-
lights how FENet reduces both trial-to-trial variability (FENet in red 

line is closer to ground truth for each trial repetition) and within-trial 
variability (FENet in red line demonstrates less variability within each 
trial). Extended Data Fig. 3a,b shows that FENet does not rely on the 
low-frequency (<250 Hz) local field potentials to achieve its enhanced 
decode performance. As designed, FENet improves population decod-
ing by increasing the behavioural information content of almost every 
electrode (Extended Data Fig. 4a–c). It is worth noting that, although 
FENet improves the R2  between neural features and kinematics  
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Fig. 4 | FENet features improve off-line decoding performance across all tested 
decoding algorithms. The upper two rows of panels and lower two rows of 
panels show the decoder performance for participants JJ and EGS, respectively, 
in a centre-out task. Performance is shown for five total decoding algorithms, 
each applied to features generated by seven feature extraction techniques. 
The analysed feature extraction techniques include FENet (red), WT transform 

with db20 mother WTs (blue), TCs (black), MUA (cyan), HFLFP (purple), the 
combination of FENet and HFLFP (green) and the combination of TCs and 
HFLFP (yellow). The tested decoding algorithms are SVR (first column), LSTM 
(second column), Kalman filter (KF; third column) and PSID (fourth column). The 
performance of every decoding algorithm was improved when trained on FENet 
features versus features generated using the other feature extraction techniques.
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compared with WTs and TCs, Extended Data Fig. 4d–j shows that FENet 
reports similar tuning preferences to TCs and WTs at the same  
electrodes.

To ensure that improvements in our feature extraction method 
generalize across feature decoding methods, we have also included 
the performance of additional feature decoders, namely, support vec-
tor regression (SVR)39–41, long short-term memory (LSTM)42 recurrent 
neural network (RNN), Kalman filter5,24 and preferential subspace 
identification (PSID)43. Figure 5 provides a comprehensive evaluation 
of the performance of these decoders operating on different feature 
extraction techniques. The comparisons were conducted using opti-
mized parameters for each decoder, ensuring fair evaluations rather 
than relying on standard configurations (Methods). As we see in this 
figure, FENet improves decoding R2 compared with the other feature 
extraction techniques for all the tested decoders.

We evaluated the open-loop results with FENet using neural data 
and behaviour binned at a fine temporal resolution (30 ms bins) and 
without smoothing the extracted features. This was motivated by our 
primary goal that FENet be maximally useful for closed-loop control 
where smoothing decreases the responsiveness of the closed-loop 
system by using potentially outdated neural information. However, 
recognizing that FENet could also be used for slow-timescale applica-
tions, we tested how FENet performed against TCs when smoothing the 
extracted features from a larger window size. Extended Data Fig. 5a,b 
shows the robustness of FENet against the change in the window size 
used to update the feature extraction process in our trajectory tasks. 
This analysis aimed to assess the impact of varying feature extraction 
window sizes on the performance of decoders using the extracted 
features. Throughout this study, FENet remained trained on data par-
titioned into 30 ms bins. However, we expanded the window size to 
ascertain whether FENet showed superior performance compared 
with TCs during inference. Furthermore, the utilization of a more 
extensive history of broadband data for feature extraction with larger 
window sizes introduces a smoothing effect in the decoding process. 
Consequently, we observe that both feature extraction techniques 
demonstrate improved decoder performance owing to this inherent 
smoothing effect.

To assess and understand the effectiveness of the extracted fea-
tures obtained through diverse feature extraction techniques, we con-
ducted a rigorous analysis using offline data of the best electrode from 
three sample sessions labelled as 20190314, 20200928 and 20210312 
(Extended Data Fig. 8). The data of each session consisted of eight 
distinct trials, each corresponding to a unique target location in a 
centre-out task. To differentiate between these targets, we designated 
the location where x > 0 and y = 0 as Target0. Our analysis focused pri-
marily on the feature values derived from the top electrode recorded 
during these sessions. To identify the top electrode within a session, 
we organized electrodes based on their individual electrode R2 values, 
indicating the linear predictability of kinematics for each electrode 
using each distinct feature extraction technique. Subsequently, we 
randomly chose three sample sessions spanning 2019, 2020 and 2021 
from those where the index of the top electrodes remained consistent 
across all feature extraction techniques. The results of our analysis 
demonstrated the remarkable preservation of the fundamental tuning 
characteristics of the neurons across the various feature extraction 
techniques used. It is worth noting that FENet showed substantial 
improvement in the amplitude of the preferred versus anti-preferred 
directions in the tuning curves, thus improving the ability to distinguish 
individual trials. These findings indicate that FENet provides a more 
robust and distinctive representation of the neural activity, thereby 
enhancing the performance for decoding neural signals.

Interpreting machine-learning algorithms, especially deep learn-
ing, in medical applications is a considerable challenge44. To enhance 
our understanding of the differential characteristics of FENet in com-
parison to WTs, MUA and HFLFP feature extraction techniques, we 

turn to the existing literature on interpretability in deep learning45–48. 
A key aspect worth exploring is the utilization of filter shapes that show 
discernibly distinct frequencies (Extended Data Fig. 9). Specifically, 
we examined the gain, or the amplification capability, of a sample set 
of FENet trained convolutional filters across its feature engineering 
modules. In contrast to the other filters, FENet showed a unique char-
acteristic of dynamically amplifying specific frequency bands during 
its training process. FENet’s training mechanism takes into account 
the encoded information within each frequency band, allowing it to 
selectively enhance relevant features within different frequency ranges. 
This ability to dynamically amplify distinct frequency bands sets FENet 
apart from conventional filters such as WTs, MUA and HFLFP. This 
deviation from conventional approaches indicates that FENet operates 
in a manner fundamentally distinct from these conventional feature 
extraction techniques such as WTs, MUA and HFLFP. While the exact 
nature of this divergence requires further investigation, it is evident 
that FENet functions by adaptively adjusting its filters based on the spe-
cific frequency information, which shows a more nuanced and refined 
approach of feature extraction and leads to improved performance in 
analysing neural data.

To gain more insight into the specific regions of input data that 
receive more attention from FENet during its prediction process, we 
present two illustrative examples of single-electrode input samples 
obtained from FENet and WTs (Extended Data Fig. 9, lower panel). 
These samples were collected during a specific session identified 
as 20190625. To highlight the segments of higher importance in the 
predictions made by the linear decoder, we use colour-coded visual 
representations. To accurately depict the most relevant sections of the 
input signals, we calculated the average Shapley value45,46 (Methods) 
across all samples. Subsequently, we selectively coloured the samples 
whose Shapley values surpassed this calculated average threshold. 
In addition, a horizontal line is included in the figures to denote the 
threshold used for extracting features associated with TCs from each 
input sample. The presented figures demonstrate that FENet, following 
its training, not only leverages spike information (TCs) and WT trans-
forms but also shows superior capabilities in identifying local patterns 
within the input data. Furthermore, FENet demonstrates an exceptional 
proficiency in accurately tracking rapid and abrupt changes present 
in the input signals compared with WTs. These empirical findings col-
lectively suggest that FENet possesses the remarkable ability to capture 
more intricate and localized information, which can result in enhanced 
feature extraction capabilities when compared with the conventional 
WT and TC approaches.

FENet generalizes across time, brain areas and participants
For FENet to have maximum public impact, it should work across partic-
ipants, in any implanted region of the brain, for any subset of electrodes 
and for the duration of the implant recordings. In other words, although 
FENet was trained using a particular set of participants and brain areas, 
the resulting solution should apply more generally to any situation in 
which the functional state of the brain must be inferred from electrical 
recordings. To understand how well FENet generalizes to the unseen 
data, we split our training data in various ways (in time, brain area, 
participant and electrode subset) and compared performance within 
and across our data splits. Extended Data Fig. 10 demonstrates that 
FENet generalizes within and across splits. For example, in Extended 
Data Fig. 10a, we show that decode performance on data collected from 
participant JJ in 2022 is similar whether FENet was trained on the same 
2022 data or any previous year of the implant. This is remarkable given 
the notable changes in the quality of electrical recordings over this time 
span (for example, see Extended Data Fig. 2). It is worth noting that, in 
all cases, generalization performance was substantially better than TCs 
or WTs applied to the same dataset (Fig. 3b,d). These results suggest 
that FENet can generalize across different time periods, brain areas, 
participants and electrodes (Extended Data Fig. 6f).
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Fig. 5 | Comparative performance of feature extraction techniques. 
Comparison of the cross-validated R2 of linear decoder operating on one feature 
extraction technique versus the other technique for participant JJ (top two rows 
of panels) and participant EGS (bottom two rows of panels). Red dots denote the 
sessions. The dashed line shows y = x. The percentage of dots on each side of y = x 

shows the number of sessions in favour of the corresponding feature extraction 
technique. The t-test statistics have been calculated to show the confidence 
level of the reported statistics. According to these figures, the linear decoder 
operating on the FENet-based features provides superior performance in terms 
of R2 compared with other feature extraction techniques for both participants.
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FENet generalizes across tasks
FENet substantially improved our ability to decode instantaneous 
cursor velocity in the centre-out and grid trajectory tasks. We next 
demonstrated that FENet could serve as a drop-in solution to improve 
the information content of neural features in a different task. To this 
end, we chose to apply FENet to a previously published ‘finger flexion 
grid’ task dataset49 based on the three characteristics of the dataset: 
(1) Intended BCI movements may be confounded with overt move-
ments (for example, of the head and eyes) as the participant orients to 
a target. The finger-grid task explicitly dissociates overt movements 
from the neural signals of interest by randomizing the cue location. (2) 
The populations of the sorted units collected during the finger-grid 
task exhibited representational structure that dynamically changed 
through time. The ability of FENet to recapitulate these representa-
tional dynamics, with improved SNR, would further validate that FENet 
can be dropped into any neuroscience and neuroengineering pro-
cessing chains. (3) In the finger-grid task, we test the ability to decode 
movements of each finger, which demonstrates that FENet generalizes 
to additional variables of interest to neural prosthetics. Finally, the 
finger-grid dataset was collected from participant NS, and thus, the 
successful application of FENet would demonstrate generalization of 
FENet to a new participant.

Supplementary Fig. 1a shows a schematic representation of the 
finger-grid task. In response to a visual cue, participant NS immediately 
attempted to press the corresponding finger, as though pressing the 
key to a keyboard. Movements were cued by having a cursor move 
randomly across a 4-by-3 grid of letters. The participant oriented her 
head and eyes to each position on the board after which she attempted 
the instructed movement. Supplementary Fig. 1b shows that FENet 
features improved our ability to distinguish individual finger move-
ments, here captured as the cross-validated Mahalonobis (crossNobis) 
distance49,50 between fingers. It is worth noting that the relative mag-
nitude and timing of FENet encoding of the location of the spatial cue 
(Supplementary Fig. 1c) was much smaller than what we found for digit 
encoding (Supplementary Fig. 1b). This suggests that FENet features 
are not unduly influenced by factors associated with overt movements 
such as head or cue position and instead maintain the specificity of 
populations of sorted neurons. Finally, a comparison of Extended Data 
Fig. 1d,e shows that FENet preserves the representational structure 
and dynamics of populations of sorted neurons. Taken together, these 
results demonstrate that FENet can improve decoding of a dataset 
from a new participant with electrodes implanted in different brain 
regions, while maintaining the specificity and preserving the detailed 
representational structure of sorted single neurons.

Similar to the case of the cursor control task (for example, 
Extended Data Fig. 5a,b), we tested how FENet performed against TCs 
when smoothing the extracted features. Extended Data Fig. 5c shows 
that the relative benefit of FENet is diminished with increasing smooth-
ing windows, although it maintains a benefit over TCs.

Discussion
Implantable electrode-based BCIs promise to restore autonomy to 
paralysed individuals if they are sufficiently robust and long lasting 
to overcome the inherent risks associated with brain surgery. Unfor-
tunately, the breakdown of materials in the hostile environment of 
the body37,51 and inherent stochasticity of the quality of information 
available at individual electrodes52,53 provide a substantial hurdle for 
the safety and efficacy of implantable solutions. Advances in material 
sciences, minimally invasive delivery and design modifications provide 
one path to overcome these limitations, but they may take many years 
to receive US Food and Drug Administration (FDA) approval and may 
not improve baseline decoding quality. Here we present an algorith-
mic solution, demonstrating FENet’s ability to extend the lifetime of 
implanted electrode arrays and to generally improve the performance 
of the BCI system using a simple drop-in solution.

Multiple aspects of single-unit, multi-unit and population-level 
neural behaviour can be detected from a single electrode. Exam-
ples include the waveforms of single-neuron action potentials, 
multi-unit hash, local field potentials and synchronous population 
responses36 (Fig. 1a). Intuitively, it is tempting to think that the activity 
of well-isolated single neurons would be the most informative features; 
however, within the constraints of current recording set-ups, empirical 
evidence has contradicted this intuition54,55. With FENet, our goal was 
to create a structured learning problem so that we could discover the 
best transformation using neural and behavioural data. At the same 
time, we imposed several constraints to facilitate a solution that would 
be generalizable. For example, we baked in the constraint that each 
electrode uses the same transformation and that this transformation be 
independent of behaviour. This constraint was essential for our goal to 
find a generalizable solution, a goal that reflects an underlying principle 
of our approach that the biophysical elements giving rise to the electri-
cal activity at a given electrode are consistent across electrodes, brain 
areas, individuals and time. Simplifying the argument, all human brains 
are made up of neurons and the associated interconnective matter, and 
all neurons in human brains generate action potentials. Furthermore, 
the waveform of an action potential is predominantly a function of the 
relative location of the electrode tip and the neuron, not the neuron’s 
role in behaviour56. We assume that the precise spatiotemporal fea-
tures of broadband data report the relative activity of the local neural 
ensemble and not details of the behaviour per session. Therefore, in 
a similar vein to conventional feature extraction methods that apply 
uniform operations to individual electrodes, FENet uses a consistent 
feature extraction process across all electrodes. Furthermore, it is 
crucial to consider the bandwidth limitations of implantable BCIs. 
Even with systems that currently record high-sample-rate broadband 
data, transmitting such data off-device for continuous model retrain-
ing remains impractical due to bandwidth and power constraints. 
This scenario underscores the critical advantage of FENet, which can 
be directly deployed without requiring further training on newly col-
lected broadband data. This capability paves the way for robust BCI 
performance across diverse participants and implants.

FENet was designed to be a feature extraction method that could 
easily be dropped into current decoding pipelines with existing 
decoding approaches and thus must generalize across electrodes, 
participants, brain areas and time, despite potential recording 
non-stationarities. It is possible that neural networks that are elec-
trode specific could improve performance, but this would occur at the 
cost of generalizability and ease of use. Furthermore, given recording 
non-stationarities and limited access to training data, the practical 
ability to train electrode-specific realizations of FENet is non-trivial. 
Consequently, this limitation constrains the potential benefits of 
hyper-specific solutions tailored to individual electrodes. Therefore, 
FENet is designed to be agnostic to the specific number and configu-
ration of electrodes within different BCI systems, making it readily 
adoptable by users, particularly those who prefer to avoid setting up 
their own training protocols.

In this study, we conducted an offline analysis to compare FENet’s 
performance with multiple other feature extraction techniques using 
different linear and nonlinear decoders. To expand the scope of com-
parison across different time periods and feature extraction tech-
niques, we assessed FENet’s capability to reconstruct movement 
kinematics using previously recorded neural data from implanted 
electrode arrays. A retrospective analysis over years of recordings 
showed that FENet significantly improved the cross-validated R2 and 
the SNR of extracted neural features compared with the other feature 
extraction techniques across multiple participants and through the 
lifetime of the arrays. Furthermore, FENet generalized well across 
cortical brain regions, participants and tasks, demonstrating its ability 
to serve as a drop-in replacement for other feature extraction tech-
niques. Moreover, the population-level analysis demonstrated that 
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FENet preserves the representational structure and temporal dynamics 
of sorted neural populations and, thus, provides an accurate measure 
of brain activity. Consequently, according to the results of our offline 
analysis, we evaluated and compared the performance of TCs, as the 
current standard for closed-loop control4,6,22,26,27,31,34, and WT trans-
forms, which have also demonstrated performance improvements in 
our offline analysis and in the recent studies on BCIs20,29, against FENet 
features in our closed-loop analysis. Neural decoders using FENet-based 
features outperformed TC-based and WT-based features across all 
metrics. In addition, FENet enhanced the cursor’s responsiveness to 
the participant’s intent, reducing the time it took for the cursor to move 
towards the target after its onset. These improvements in both aspects 
led to substantial enhancements in overall task performance during 
the closed-loop sessions. While we reported both the open- and 
closed-loop performances for participant JJ, our evaluation of the 
presented feature extraction techniques was limited to the recorded 
open-loop neural data from participants EGS and NS in specific tasks, 
as their participation in the clinical trial concluded, and their electrodes 
were explanted. Nevertheless, the principles derived from analysing 
the recorded open-loop neural data from EGS and NS will hold relevance 
for future participants with electrodes in the same cortical areas. Taken 
together, FENet can improve the efficacy of implantable electrode 
systems while delivering improved performance and ease of use.

It is worth noting that, across all testing conditions, FENet 
improved results when analysis was done at fine temporal scale. How-
ever, in some cases, the benefits of FENet were reduced as smoothing 
was applied to the data. Thus, FENet seems to considerably reduce 
high-frequency within-trial variability, yet may have less impact on 
reducing trial-to-trial variability (Extended Data Fig. 5d), depending on 
experimental set-up. Reducing the high-frequency variability is criti-
cal for real-time BCIs, situations in which the behaviour unfolds over 
very rapid timescales, when looking for precise estimates of timing or 
when attempting to infer network dynamics. Trial-to-trial variability 
can be captured by how similar the neural response is when repeating 
the same experimental trial. The trial-to-trial variability is an accurate 
report of how behavioural factors have changed the activity measured 
at the single-electrode level. Reducing the trial-to-trial variability is also 
important; however, the underlying reasons for trial-to-trial variability 
are less clear. For instance, measured differences may be accurate 
reflections of the underlying state of the network that, for example, 
reflect task-irrelevant features of the participant’s behavioural state57. 
To the degree that trial-to-trial differences are driven by behavioural 
factors, no algorithm measuring the activity from a single electrode can 
reduce this variability, although populations of such electrode record-
ings can reduce variability through estimates of latent variables22.

It is important to note that FENet was designed to maintain a small 
computational footprint in comparison to ultradeep RNN feature 
extraction techniques and other convolutional network designs. This 
was achieved by extracting features from single electrodes using the 
same trained parameters for all electrodes. We deliberately constrained 
the architecture to an algorithm with complexity that allows for compu-
tation within 5 ms in closed-loop BCIs. The presented version of FENet, 
based on the WT with db20 mother WT architecture described in the 
paper, consists of only 560 learnable parameters. This notably reduces 
its size compared with more complex deep-network alternatives. In 
addition, we conducted experiments by swapping hyperparameters 
of FENet, demonstrating that we can achieve comparable benefits and 
performance even with a smaller architecture. Exact hardware details 
will be explored further in our upcoming works, which will focus spe-
cifically on hardware implementation.

Our primary focus within this study was to test techniques that 
can be applied in a causal real-time system. To explore the effect of 
applying a non-causal filter when extracting TCs58, we evaluated the 
decoder’s performance when using FENet as the feature extraction 
technique versus TCs preceded by a non-causal filter that was applied 

over the data twice—once forward and once in reverse. Supplementary 
Fig. 2 shows the performance of the decoder on eight sessions. This 
figure highlights the relative strengths of different feature extraction 
approaches in enhancing decoder performance, with FENet emerging 
as the most effective technique. The non-causal filtering applied to TCs 
improves performance but is still notably less effective than FENet in 
terms of decoding accuracy.

Traditionally, BCI systems can trade off speed and accuracy 
depending on the design preferences. The ability of FENet to improve 
on both sets of metrics in parallel represents a considerable advance in 
BCI design. It is worth noting that these advantages come with little or 
no cost in either computational or experimental performance. FENet 
preserves the representational structure of sorted neural popula-
tions and therefore should be applicable to any subsequent decoding 
scheme. Moreover, FENet remarkably improved a human clinical BCI 
participant’s ability to use brain signals to control a computer cursor 
in the closed-loop control compared with TCs and WTs. This perfor-
mance increase was clinically important: before FENet, the clinical 
participant requested surgical reimplantation to improve the quality 
of neural recordings that had degraded substantially since the initial 
implantation. With FENet, the participant was satisfied with the quality 
of his neural control. Thus, FENet can extend the functional lifetime 
of the implanted electrodes, mitigating the need for revision surger-
ies and thus improving commercial viability. It is important to clarify 
that our reference to improved performance specifically pertains to 
the feature extraction component, where the participant serves as 
their own control. Furthermore, it is crucial to acknowledge that the 
performance of a BCI system can be influenced by various factors, both 
within and outside of our control. These factors may include the nature 
of the participant (human or non-human primate), implant site and age, 
recording yield, task and the specific decoder used5,32–35. Recognizing 
this inherent heterogeneity in BCI performance across participants, 
tasks and labs, we adopt a within-participant experimental set-up 
to evaluate FENet. We observed enhanced performance when using 
features extracted by FENet with improvements across all datasets 
included in this study (3 human participants, 192 total electrodes and 
many hours of neural data representing multiple years of implanta-
tion). We found that FENet generalized well between three participants, 
three brain regions, closed- and open-loop settings and up to 5 years of 
recordings. This provides preliminary confidence that FENet provides 
a generalizable improvement to current feature extraction methods. 
However, it remains possible that FENet will not improve performance 
across all participants, tasks and array technologies. We therefore pro-
vide our code in a public repository in the hope that additional clinical 
sites will test and ultimately improve FENet.

Methods
Human participants and neural recordings
We conducted our FDA- and Institutional Review Board-approved BCI 
study with a 54-year-old (referred to as JJ) and a 32-year-old (referred 
to as EGS) tetraplegic (C5-C6) male human research participants for 
trajectory tasks. Participant JJ has Utah microelectrode arrays (Neuro-
Port, Blackrock Microsystems) implanted in the hand-knob of motor 
cortex and superior parietal lobule of the posterior parietal cortex 
(PPC)59. Participant EGS has Utah electrode arrays implanted near the 
medial bank of the anterior intraparietal sulcus and in Brodmann area 
5 (refs. 8,60,61). We collected open-loop data over 54 sessions for JJ and 
over 175 sessions for EGS in our open-loop analysis. Broadband data 
were sampled at 30,000 samples per second from the two implanted 
Utah microelectrode arrays (96 electrodes each). For the finger-grid 
task, we recorded the single- and the multi-neuron activities from a 
tetraplegic 62-year-old female human participant with a complete 
C3–C4 spinal cord injury (referred to as NS)49. We recorded nine ses-
sions of the broadband neural activity from a Utah microelectrode 
array implanted in the left (contralateral) PPC at the junction of the 
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post-central and intraparietal sulci59,61,62. This region is thought to spe-
cialize in the planning and monitoring of grasping movements60,63–65. 
In this work, although we have reported the open- and closed-loop 
performances for participant JJ, we have only evaluated the presented 
feature extraction techniques on the recorded open-loop neural data 
of EGS and NS in the trajectory and the finger-grid tasks, respectively, 
as EGS and NS have completed their participation in the clinical trial 
and have had the electrodes explanted. However, the principles learned 
from the analysis on the recorded open-loop neural data from EGS and 
NS will be relevant to the future participants with electrodes in the 
same cortical areas.

Behavioural tasks
Data were collected while participants performed various 2D con-
trol tasks, including centre-out5,19,28, grid and finger-grid49 tasks using 
pseudo-random interleaving of targets to ensure balanced statistical 
sampling of movement directions8. In the centre-out task, a cursor 
moves in two dimensions on a computer screen from a central target 
outward to one of the eight targets located around a circle and back to 
the centre (Fig. 1e,f, top). We define a trial to be one trajectory, either 
from the central location outward to the peripheral targets or from 
the peripheral targets back to the centre target. In the grid task, the 
target appears in a random location in an 8-by-8 squared grid on the 
computer screen, and the cursor moves starting from the old target 
to the newly appeared target (Fig. 1f). Cursor movement kinematics 
are updated every 30 ms for JJ and every 50 ms for EGS. For the pur-
poses of this study, we extracted trajectories from 200 ms after target 
presentation to 100 ms before the cursor overlapped the target. This 
segment of time captures a window where the participant’s intent 
should be well defined, after reacting to the presented target and 
before possibly slowing down as the cursor approaches the target8. 
Neural features were regressed against cursor velocity, which, for 
simplicity, was modelled as constant amplitude. Each of these tasks was 
conducted in either open-loop, in which the cursor movements were 
fully generated by the computer and the participant did not directly 
control the cursor’s position but instead imagined control over a visu-
ally observed, computer-controlled cursor, or closed-loop, in which 
the cursor movements were under the participant’s full control with 
0% assistance from the computer.

For the finger-grid task, a text cue (for example, ‘T’ for thumb) 
was displayed to the participant on a computer screen in each trial. 
Then, the participant immediately attempted to press the correspond-
ing finger of the right hand49,59 (Supplementary Fig. 2). To model the 
multi-finger tasks, we considered the muscle model and somatotopy 
model50. The muscle activation model posits that the representa-
tional structure should align with the coactivation patterns observed 
in muscle activity during individual finger movements. Conversely, 
the somatotopy model suggests that the representational structure 
should correspond to the spatial arrangement of the body, wherein 
neighbouring fingers exhibit similar representations. Although soma-
totopy typically pertains to physical spaces resembling the body, in 
this context, we use the term broadly to encompass encoding spaces 
that resemble the body49.

Preprocessing the broadband neural data
To reduce the effect of high-frequency noise, which has not been 
removed by the recording hardware, we applied common average 
referencing (CAR) to the recorded broadband neural data as the first 
step of the preprocessing66. To apply CAR, we used principal com-
ponent analysis to remove the top two principal components across 
each electrode before transforming the remaining principal compo-
nents back to the time domain. After applying the CAR to the recorded 
broadband data, we applied an 8-order elliptical high-pass filter with 
the cut-off frequency of 80 Hz, pass-band ripple of 0.01 dB and the 
stop-band attenuation of 40 dB to the common-average-referenced 

neural data to exclude the low-frequency variations in the broadband 
neural activities. Given that we estimate FENet features in a window 
duration of 30 ms, the theoretical lower frequency limit is approxi-
mately 33.33 Hz. However, to accurately estimate frequency content, 
we need at least two cycles of the lowest frequency within our window. 
Setting a high-pass cut-off at 80 Hz ensures more than two cycles within 
the 30 ms window, providing a more reliable frequency estimation.

FENet pipeline
To train FENet, we created a two-stage optimization problem, which 
transformed broadband signals into the movement kinematics within 
a BCI cursor control paradigm: In the first stage, broadband activity is 
transformed into neural features by using FENet as a 1D convolutional 
neural network. In the second stage, an analytic linear mapping is 
trained to predict the movement kinematics from the resulting neural 
features. The two-stage joint optimization enforces that the feature 
extraction process generates informative features while being inde-
pendent of the relationship between the neural activity and the cursor 
kinematics. As each electrode records a relatively independent 1D 
temporal signal, we use 1D convolutional filters in our feature extractor 
architecture to take in single-electrode broadband samples and output 
M features (that is, the instantaneous states of the various information 
sources on the electrode). Suppose that x ∈ ℝS  represents a 1D time 
series consisting of S samples of the broadband neural data recorded 
from one electrode, which has been sampled at the sampling frequency 
of Fs Hz. FENet can be represented as a function ℱψ: ℝS → ℝM×N, which 
maps the input waveform to an M-dimensional neural feature space. 
M < S shows the number of extracted features, and N  is the number of 
electrodes. ψ corresponds to the feature extraction (in this case, FENet) 
parameters. The decoder can be represented by gθ(.), in which g  is 
parameterized by θ. Then, the supervised optimization problem that 
should be solved to find the parameters of the FENet and the decoder 
will be as follows:

ψ∗,θ∗ = argminψ,θE(x,y)∈Dℒ (gθ(ℱψ (x)), y) . (1)

where (x, y) are the samples in the labelled dataset, D. ℒ represents the 
loss function, which in our regression problem is the mean squared 
error (m.s.e.) between the correct and the predicted movement kine-
matics of the cursor velocity. According to our assumption that the 
generative process that produces the broadband neural activity is 
statistically similar across electrodes, we design FENet such that it 
learns a single set of parameters ψ for all the electrodes. Thus, the same 
instantiation of FENet, as defined by the parameter set ψ, is applied 
independently to broadband data recorded from all electrodes.

The architecture of FENet in the BCI system is shown in Extended 
Data Fig. 1b. As a nonlinear feature extractor, FENet consists of a set of 
1D convolutional filters, nonlinear activation functions and pooling 
layers15–17. Let x ∈ ℝS denote the input of the FENet with size 1 × S, where 
S is the number of input data samples (for example, 30 ms of the 
recorded broadband neural data, which includes 900 samples for JJ 
and NS, and 50 ms of the recorded broadband neural data, which 
includes 1,500 samples for EGS). The input x  is passed into M − 1 
back-to-back feature engineering modules (Fig. 1c). In each feature 
engineering module, the input data of the ith feature engineering 
module, si − 1, is padded with zeros, and the zero-padded data are passed 
through the two separate temporal 1D convolutional filters. The output 
of the upper filter is downsampled by stride 2 and is passed through a 
leaky rectified linear unit (ReLU) nonlinear activation function. The 
leaky ReLU activation is designed to find the absolute value of its input 
with the parameter α = −1 in the negative side. Then, the output of the 
current filter is passed through an adaptive average pooling layer to 
summarize extracted temporal patterns into a single feature, fi. We 
pass the output of the lower filter, si, to the next feature engineering 
module. This process is repeated to find the output feature vector. We 
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pass the output of the lower filter of the last feature engineering module 
of FENet to a leaky ReLU activation and an adaptive average pooling 
layer to append this single extracted feature to the feature vector as 
well. Therefore, the upper convolutional filter in each feature engineer-
ing module generates one of the FENet extracted features, and the 
lower convolutional filter of each module extracts more abstract fea-
tures from its input to be used as the input of the next feature engineer-
ing module. Finally, we use batch normalization as a regularization 
technique, which standardizes the output of the last layer of FENet to 
zero mean and unit variance for the training examples equal to the 
batch size. Batch normalization helps the used optimization algorithm 
by keeping inputs closer to the normal distribution during the training 
process48. FENet is unique as it is parameterized using an architecture 
that jointly optimizes the feature extraction and feature decoding 
stages of the neural decoding process, while constraining the feature 
extraction algorithm to use the same parameters for all the electrodes 
used in the training set. The constraint of sharing parameters across 
electrodes will keep the number of learnable parameters small in FENet 
architecture. Moreover, FENet is trained to receive a single neural 
electrode of broadband data as its input and extracts the signal’s most 
informative features automatically. This process can be repeated for 
all recording electrodes to estimate the current state of a neural popula-
tion independent from the decoder.

Generation of other features
We have extracted the features from the 30 ms bins of recorded broad-
band neural data for JJ and NS and from 50 ms bins for EGS without any 
post hoc offline steps. To extract WT features19,20, we used a db20 mother 
WT with seven scales on moving windows (no overlap) of the time series 
recorded from each electrode. A db20 mother WT was selected as it 
contains filters with length 40 and can model WT high-pass and low-pass 
filters more accurately compared with other Daubechies WT families20. 
Moreover, in our preliminary experiments, we found that it outper-
formed other WT variants for the datasets tested in the current study19 
(such as db4, Haar). The mean of absolute-valued coefficients for each 
scale was calculated to generate M = 8 time series per electrode, includ-
ing seven detailed coefficients and one approximation coefficient gener-
ated by the WT high-pass filters and the final stage WT low-pass filter, 
respectively. To generate TC features, we set a threshold for the neural 
data at −3.5 times the root mean square of the noise of the broadband 
signal, independently computed for each electrode, after band-pass 
filtering the broadband signal between 250 Hz and 5 kHz. We did not sort 
the action potential waveforms21. TC events were counted using the same 
intervals as WTs and FENet. To derive the MUA features, the raw broad-
band neural data underwent a bandpass filtering process (a third-order 
Butterworth filter) with a frequency range of 300 to 6,000 Hz. Following 
this, customized root mean square values were calculated to generate 
the MUA signal for each bin38. To generate the HFLFP features, the raw 
broadband neural data from each electrode underwent a second-order 
band-pass filtering process using a Butterworth filter with low and high 
cut-off frequencies set at 150 Hz and 450 Hz. The power of the filter’s 
output was then calculated and used as the HFLFP feature for each 
electrode4,34. For FENet–HFLFP and TC-HFLFP, we simply concatenate 
the corresponding features together to generate a larger feature matrix 
that include both types of extracted feature.

Preprocessing of the generated features for open- and 
closed-loop analysis
During our offline analysis, we intentionally refrained from applying 
smoothing to the features under investigation. Smoothing techniques 
have the potential to enhance the R2 of decoder output in ways that 
do not generalize to online control. This is because smoothing works 
by averaging across time, effectively introducing control delays that 
render the cursor uncontrollable or undesirably sluggish. Therefore, 
we opted to evaluate performance in the absence of smoothing. By 

contrast, during closed-loop control, we used exponential smoothing58 
as a preprocessing step for the extracted features. This was done to 
mitigate abrupt changes and jitters for improved stability67. With the 
participant in the loop, we could ensure that the level of smoothing was 
not burdensome to the participant. Finally, we also evaluated off-line 
performance with smoothing (either explicitly or implicitly in the 
architecture of the decoding algorithm) to ensure that improvements 
with FENet were not restricted to high-frequency components of the 
signal that could easily be removed by subsequent signal processing.

Given the flexibility of FENet’s and WTs’ design to accommodate 
varying numbers of feature extraction levels, the resulting impact on 
the number of features extracted from each electrode necessitates 
the reduction of dimensionality. This reduction is essential to prevent 
overfitting of the decoder during individual sessions. To address this 
concern while maintaining the single-channel architecture of the fea-
ture extraction technique, we used partial least squares regression68 
(PLSR). Specifically, PLSR was independently applied to the features 
extracted from each channel. The objective was to condense the eight 
extracted features obtained from each electrode into a smaller set of 
features, specifically two features in this case.

Training and inference for FENet
The architecture of the BCI system is shown in Extended Data Fig. 1b. 
The input of the system is the broadband neural data with the dimension 
of B × N × S, where B is the batch size, N  is the number of input neural 
electrodes and S is the number of samples of the broadband neural data 
in a specific time interval. To update the network parameters during 
training, we randomly picked one training session and passed a batch 
of the associated broadband activities to the FENet to extract neural 
features. According to our experiment, the best performance was 
achieved when we set the batch size to be equal to the length of a session. 
Moreover, we use one training session for each update cycle as it is the 
only way that simultaneously acquired neural recordings can be associ-
ated with corresponding cursor kinematics. The same FENet parameters 
are applied to all the N  neural electrodes. The output of the FENet is a 
feature matrix with the dimension of B × (N ×M), where M  is the number 
of the generated neural features per electrode. This feature generation 
process is the first stage of the two-stage optimization process. To 
reduce the dimension of the FENet output per channel to avoid overfit-
ting of the consequent decoder, we applied M  electrode-specific PLSR68 
to the M  FENet-generated features of each neural electrode to reduce 
the M  features to K , in which K  ≤ M . We then used the output of the 
FENet, which was applied on a single session at the current iteration, to 
train an analytical linear decoder, which learns to map the extracted 
neural features to the movement kinematics of the computer cursor 
for the current single session analytically by the following formula23,69:

P = Uβ + ε (2)

β = (UTU)−1UTP (3)

where P is the B × 2 kinematics matrix, U  is the B × K  extracted neural 
feature matrix, β is the linear decoder coefficient and ε is the regression 
error. As predicting the velocity of the cursor movements in a BCI system 
is more stable and smoother than predicting the cursor position70, we 
first predict the cursor velocity by using the decoder. Then, to find the 
position of the cursor movements, we integrate the predicted velocity 
patterns of the cursor in x and y directions26,27. After the linear decoder 
predictions, we froze the trained linear decoder parameters and per-
formed backpropagation71 to only update FENet weights. We repeated 
this whole process to train FENet and linear decoder parameters per 
system update, which happened per session.

For the symmetric replication of the feature engineering modules 
of the FENet, we designed FENet to have a hierarchical and symmetric 
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architecture similar to the db20 WT transform. As the FENet architecture 
is inspired by the WT transform architecture, we initialized the FENet 
convolutional filters with db20 mother WT filters to guarantee the con-
vergence of the FENet by a more accurate initial condition at the begin-
ning of training19,20. We used seven back-to-back feature engineering 
modules in the FENet architecture (Fig. 1c). We set the length of each 
feature engineering module’s convolutional filter to 40, similar to the 
length of db20 filters. The convolutional filters kernel sizes and the 
strides of the filters were set to 1 and 2 for all the convolutional filters, 
respectively. To compensate for the left and the right edge effect of the 
convolutional filters’ inputs during the convolution operation, we pad-
ded 39 zeros to both sides of the inputs at the first block of the feature 
engineering modules, which is one less than the filter length to make 
sure the first convolution only covers the first sample of each input. To 
tune the network parameters and to train the network, we have used the 
open-loop neural data recorded from 11 sessions of the first year of JJ’s 
implantation. Extended Data Fig. 6c shows the amount of training data 
needed to train FENet. To train FENet, we did cross-validation by dividing 
the training sessions into train and validation sessions, holding three of 
the sessions out for validation, while training the network on the remain-
ing eight sessions. For training the linear decoder after FENet generated 
the features per session, we applied the 10fold cross-validation on each 
session. To avoid overfitting, we used early stopping to stop the training 
when the validation loss on the left-out validation sessions started to 
increase48. We also used dropout, which has been shown to reduce over-
fitting in neural networks72. To control the range of the values of the 
network weights, we applied weight decay L2 regularization on all the 
weights of the network and batch normalization on the output features 
as other regularization techniques for the stability of training48. We 
optimized the m.s.e. between the predicted and the ground-truth move-
ment kinematics by using the Adam optimizer73 to update the learnable 
parameters of the FENet. The learning rate α starts at α = 0.1, which is 
divided by 2 every 10 epochs using a linear scheduler. The value for the 
drop-out has been set to 0.2 for all the layers. To avoid overfitting of the 
linear decoder, the batch size was set to be equal to the length of the 
input session, which is around 20 (s.d. ±3) times greater than the dimen-
sionality of the FENet-generated features but can differ from session to 
session. We applied early stopping as another regularization technique, 
which avoids overfitting by stopping the training process if validation 
loss does not decrease after 20 epochs.

We conducted parameter sweeps using Bayesian optimization74 
on the FENet model to assess the importance and impact of each hyper-
parameter in the model’s architecture. The results indicate a correla-
tion between the R2 values and the parameter values (Extended Data 
Fig. 8). Our sweeps based on using Bayesian optimization shows that 
the strides of the initial layers emerge as the most influential param-
eters, with smaller strides yielding higher performance. One possible 
interpretation of this phenomenon is that smaller strides enable con-
volutional kernels to encompass a broader range of patterns within 
the input. By contrast, larger strides restrict the coverage between 
successive kernel movements, leading to a reduced capacity for filters 
to learn diverse patterns48. In addition, we observed that the kernel size 
becomes more crucial in later layers compared with the initial layers. 
This suggests that the inputs to later layers summarize information 
from multiple samples in the preceding layers. Consequently, the 
network becomes more sensitive to kernel size when combining richer 
features with different kernel sizes, as these layers combine samples 
providing less abstract information than deeper layers.

Our training architecture assumes that the neural activity is inform-
ative of movement kinematics. As FENet is trained on single electrodes, 
to remove the noisy and non-informative electrodes during training, 
we trained FENet on the top 25, 50 and 75 electrodes with the highest 
cross-validated R2 values after sorting the neural electrodes according 
to the R2 values of the TCs with respect to the cursor movement kinemat-
ics (Extended Data Fig. 6a,b). According to our analysis, the top 50 

electrodes out of 192 recorded electrodes per session were providing 
the highest averaged performance on the validation data and therefore 
were used during training of the FENet. In theory, pre-selecting elec-
trodes based on TCs performance could bias results to favour TCs in 
comparisons. Despite this, TCs were consistently outperformed by both 
the FENet and the WTs, as shown in the closed- and open-loop results 
(Figs. 2 and 3). To ensure that there is no feature bias favouring 
well-tuned electrodes compared with the other electrodes, we divided 
the top 75 electrodes of each session into three equal groups based on 
the sorted cross-validated R2 values: top 25, middle 25 (mid 25) and 
bottom 25 (down 25) electrodes. In each experiment, we train FENet on 
the top 25, mid 25 or down 25 electrodes of the training sessions sepa-
rately. Then, we train and test the linear decoder when it operates on 
FENet features extracted from the top 25, mid 25 or down 25 electrodes 
of the test session. Extended Data Fig. 6b shows the cross-validated 
averaged R2 of each experiment. The linear decoder operating on FENet 
trained on the top 25 electrodes of the training sessions achieves higher 
averaged R2 when it is tested on the top 25, the mid 25 or the down 25 
electrodes. Therefore, using informative features to train the FENet is 
an integral aspect of the training process.

During the inference, we froze the trained FENet, and to be consist-
ent with the training, we applied electrode-specific PLSR68 to the M  
FENet-generated features of each neural electrode to reduce the M  
features to K , in which K ≤ M  (Extended Data Fig. 1b). We set M = 8 and 
K = 2 in our experiments according to the analysis on the number of 
partial least squares coefficients (PLSs) needed for regression 
(Extended Data Fig. 6d,e). PLSR maps the input features to a 
lower-dimensional space by defining an analytic linear transformation 
between its inputs and its lower-dimensional outputs, which maximizes 
the covariance between the neural data and the kinematics. Then, we 
trained an analytical linear decoder based on the top two PLS-generated 
neural features to minimize overfitting that can occur when too many 
predictor variables are used relative to the amount of training data.

To evaluate the impact of PLSR on the performance of the linear 
decoder operating on FENet, we conducted a rigorous analysis using data 
from all 54 sessions of participant JJ (Extended Data Fig. 3c,d). Our evalua-
tion involved a comparison of FENet’s performance with and without the 
application of PLSR, specifically applied to the top 40 electrodes within 
these sessions. The selection of these top 40 electrodes was motivated 
by the goal of mitigating potential overfitting issues that may arise in 
the linear decoder, particularly in scenarios where PLSR is not used. The 
results depicted in this figure provide compelling evidence demonstrat-
ing that FENet shows the ability to effectively capture informative features 
from the vast neural data, irrespective of the presence or absence of 
PLSR. In addition, the application of PLSR plays a vital role in reducing the 
dimensionality of the extracted features. This dimensionality reduction 
step is crucial as it helps prevent overfitting of the decoders, particularly 
when working with limited neural data obtained from human participants 
within each session. These findings highlight the robustness and efficacy 
of FENet as a feature extraction technique in neural decoding tasks. 
Furthermore, they underscore the importance of using dimensionality 
reduction methods such as PLSR, which can enhance the performance 
and generalizability of the linear decoder by mitigating the risk of overfit-
ting when working with limited neural data.

To assess the significance of each extracted feature by FENet for 
every electrode, we used the Shapley value45 as a measure of impor-
tance. The Shapley value allows us to determine the contribution of 
each input feature in the decoding process when using a linear decoder. 
The computation of the Shapley value involves comparing the decod-
er’s output with and without the inclusion of a specific feature. The 
discrepancy between these two cases reflects the contribution of the 
feature to the decoding process. This calculation is repeated for all pos-
sible combinations of features per electrode, and the Shapley value for 
a given feature is determined by averaging these contributions across 
all possible combinations, considering the number of combinations 
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that include the feature. In this manner, we can evaluate the incremental 
contribution of each feature to the decoder’s output while considering 
the interactions between features. Features with higher Shapley values 
are deemed more important as they make a greater contribution to the 
output variable compared with other features. Extended Data Fig. 7 pre-
sents the relative Shapley values of the eight FENet-extracted features. 
These values represent the average contribution of each feature to the 
decoding process, calculated and averaged across all electrodes and 
sessions, using offline data recorded from human participant JJ during 
the centre-out task. Extended Data Fig. 7 illustrates that the features 
extracted at the initial stage play a more crucial role in predicting 
outcomes through the linear decoder.

As an alternative to the PLSR for dimensionality reduction, to 
combine the dimensionality reduction technique with the feature 
extraction process, we have replaced the PLSR with a single fully con-
nected layer as the last layer of the FENet, which maps M = 8 
FENet-generated features to K = 1 feature per electrode (Extended Data 
Fig. 1c). Extended Data Fig. 1e,f compares the performance of the FENet 
when the dimensionality of the FENet convolutional filters outputs is 
reduced by using the PLSR or the added fully connected layer as the 
last layer of the FENet for dimensionality reduction. According to these 
figures, the performance of the decoder stays almost the same inde-
pendent from these two dimensionality reduction techniques. Combin-
ing the feature extraction and the dimensionality reduction processes 
will make the usage of FENet architecture easier, while there is less 
control on the number of extracted features per electrode compared 
with using the PLSR for dimensionality reduction.

Decoders
To evaluate the performance of different feature extraction techniques, 
we passed them to different types of decoder, including the linear 
decoder23,69, SVR39–41, LSTM42, Kalman filter5,24 and PSID43.

The linear decoder uses a standard linear regression model where 
we can predict kinematics ( ̂y) from the extracted neural features (u) 
by using the following:

̂y = b +
N
∑
i=1
Wiui (4)

We find the weights Wi and the bias term b through a least squares 
error optimization to minimize m.s.e. between the model’s predictions 
and ground-truth kinematics during training. The parameters are then 
used to predict unseen kinematics given extracted neural features 
during the test.

SVR is the continuous form of support vector machines where 
the generalized error is minimized, given by the following function:

̂y =
N
∑
i=1

(α∗i − αi) k (ui,u) + b (5)

where α∗i  and αi are Lagrange multipliers and k  is a kernel function, 
where we use the radial basis function kernel in this paper. The Lagrange 
multipliers are found by minimizing a regularized risk function:

Rreg[f] =
1
2 ||w||

2 + C
l
∑
i=1
Lε(y) (6)

where ||w||2 represents the model complexity, and C  is a constant that 
determines the trade-off between the ε insensitive loss function Lε(y). 
For SVR, we used a radial basis function kernel with C set to 1.

It is well known that simple RNN75 units cannot remember 
long-term dependencies in sequential data because of the vanishing 
gradients problem. Another version of RNNs that is widely used in the 
literature are RNNs with LSTM units. By denoting ∘ as Hadamard prod-
uct, the LSTM is defined as follows:

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

fk = σ(Wfuuk +Wfrrk−1 + bf)

ik = σ(Wiuuk +Wirrk−1 + bi)

ok = σ(Wouuk +Worrk−1 + bi)

cu = tanh (Wcuuk +Wcrrk−1 + bc)

ck = fk ∘ ck−1 + ik ∘ ck−1
rk = ok ∘ tanh(ck)

̂yk = Wyrrk + by

(7)

rk  is the hidden state as in simple RNN; cu is the output from the cell 
update activation function; ck is the LSTM cell’s internal state; fk, ik and 
ok are the output matrices from the respective forget, input and output 
activation functions, which act as the LSTM’s gates; W  and b represent 
the weights and biases; and σ  is the sigmoid function. Following our 
parameter sweeps, the settings for the number of layers, the number 
of recurrent nodes and the history of LSTM were determined as 1, 50 
and 10, respectively.

The Kalman filter combines the idea that kinematics are func-
tions of neural firings and the idea that neural activity is a function 
of movements, or the kinematics. This can be represented by two 
equations:

{
̂yk+1 = Ak ̂yk +wk
uk = Hk ̂yk + qk

(8)

These represent how the system evolves over time as well as how 
neural activity is generated by the system’s behaviour. The matrices A, 
H, Q and W can be found through a training process (where q ∼ 𝒩𝒩(0,Q) 
and w ∼ 𝒩𝒩(0,W). Using properties of the conditional probabilities of 
kinematics and neural data, we get a closed-form solution for maximiz-
ing the joint probability p(YM,UM). Using the physical properties of the 
problem, we get matrix A to be of the following form:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 dt 0

0 1 0 dt

0 0 a b

0 0 c d

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(9)

where Av is defined as follows:

Av = [
a b

c d
] = V2VT1 (V1VT1 )

−1 (10)

V1 consists of the velocity kinematics points except for the last time 
step, V2 consists of the velocity kinematics points except for the first 
time step, and dt  is the time step size used (in our case, 30 ms for JJ and 
NS, and 50 ms for EGS).

Fur thermore, W  is  a zero matrix with the matrix 
Wu =

1
N−1

(V2 − AV1)(V2 − AV1)
T  in the bottom right corner. H  and Q are 

given by the following:

{
H = UTY(YYT)−1

Q = 1
N
(U − HY)(U − HY)−1

(11)

Then, we can use the following updated equations:

⎧⎪⎪
⎨⎪⎪
⎩

̂y−k = A ̂yk−1
P−k = APk−1AT +W

̂yk = ̂y−k + Kk(uk − H ̂y−k )

Pk = (1 − KkH)P−k

(12)
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Here, P  is the covariance matrix of the kinematics. Kk, the Kalman 
filter gain, is given by the following:

Kk = P−k H
T(HP−k H

T +Q)−1 (13)

PSID models the brain’s state as a high-dimensional latent variable 
influencing neural activity and behaviour. PSID, an algorithm built 
upon the Kalman filter equations, uses a dynamic linear state space 
model to describe the association between the latent state and the 
recorded neural activity (uk) and behaviour ( yk). The model consists 
of a latent state xk ∈ ℝnx , which includes behaviourally relevant 
(x(1)k ∈ ℝn1) and irrelevant (x(2)k ∈ ℝn2) components as below:

⎧⎪
⎨⎪
⎩

xk+1 = Axk +wk
uk = Cyxk + vk
yk = Czxk + εk

, xk = [
x(1)k

x(2)k
] (14)

PSID uses a two-stage identification approach. In the first stage, 
it directly learns the behaviourally relevant component (x(1)k ) from 
training data without simultaneously learning the irrelevant compo-
nent (x(2)k ), which is optional in the second stage. This prioritization 
enables PSID to learn behaviourally relevant neural dynamics using 
low-dimensional states (only x(1)k ). Similar to Kalman filter, the PSID 
model formulation includes noise terms (εk, wk  and vk) representing 
behaviour dynamics that are not present in the recorded neural activity. 
The parameters of the model (A, Cy, Cz  and noise statistics) are learned 
by PSID using training samples of neural activity and behaviour43. After 
the parameter sweep, we adjusted the latent space dimension to 10.

Open-loop evaluation measure
We reported the cross-validated coefficient of determination76, R2, as 
a measure of the strength of the linear association between the pre-
dicted and the ground-truth kinematics, respectively. The R2

x  and R2
y 

have been computed independently in the x (horizontal) and y (vertical) 
dimensions using the definition of the coefficient of determination:

R2 =
⎛
⎜⎜
⎝

∑i(yi − ̄y)( ̂yi − ̄ ̂y)

√∑i(yi − ̄y)2√∑i( ̂yi − ̄ ̂y)2
⎞
⎟⎟
⎠

2

(15)

where yi and ̂yi are the ith ground-truth and prediction, respectively. 
R2 is a real number that varies from 0 to 1. The larger the R2 is, the better 
the performance. We found that results are qualitatively the same when 
analysing each dimension separately. Then, we calculated the com-
bined R2 value for both x and y directions to be the norm of the [R2

x , R2
y] 

vector as below:

R2 = 1
√2√

(R2
x)

2 + (R2
y)

2
(16)

The maximum for R2  occurs when the predictions and the 
ground-truth are completely matched, in which R2

x and R2
y are both equal 

to 1.
To assess the performance on the finger-grid task49, we used the 

framework of representational similarity analysis77,78 and representa-
tional dynamics analysis79. Representational similarity analysis quanti-
fies the neural representational structure by measuring the pairwise 
distances between the neural activity patterns associated with each 
finger. These distances are used to construct the representational 
dissimilarity matrix, which provides a concise summary of the rep-
resentational structure. It is worth noting that these distances are 
independent of the original feature types, such as electrode or voxel 
measurements, enabling us to compare finger organizations across 
participants and different recording modalities80. In addition, we used 

representational dynamics analysis to explore the temporal evolu-
tion of the representational structure. This involved modelling the 
representational structure of finger movements at each time point as 
a non-negative linear combination of potentially predictive models.

Single-electrode evaluation
To compare the improvement of the predictability of each single elec-
trode using different feature extraction techniques, we directly trained 
three distinct linear decoders, one per each of FENet, TC and WT fea-
tures that were extracted from each single electrode. Then, we pre-
dicted the movement kinematics for each of these three decoders 
corresponding to the mentioned three single-electrode features. 
Finally, we compared the cross-validated R2 values of the predictions 
for each single neural electrode, and we repeated this process for all 
the other electrodes of 11 sample recording sessions for JJ. Extended 
Data Fig. 4a–c shows the R2 value of linear decoder operating on FENet, 
WTs and TCs as the feature extraction technique with respect to each 
other, in a series of pair-wise comparisons. The blue dots represent the 
electrodes that have had low R2 values in both feature extraction tech-
niques, whereas the red dots represent the electrodes with the high R2 
values in at least one of the reported feature extraction techniques. 
FENet improved single-electrode R2 values compared with the TCs 
(binomial test, P = 0) and the WTs (binomial test, P = 4 × 10−8).

To compare the preferred tuning direction of the FENet features 
per channel, we trained three distinct linear decoders, one for each 
feature extraction technique (FENet, TCs, WTs) per channel. Then, we 
calculated the phase and the magnitude difference between the corre-
sponding tuning vectors for each pair of feature extraction techniques 
(Extended Data Fig. 4d–j). Although the feature extraction techniques 
are inherently different, the activity of a similar electrode maintains 
its preferred direction independent of a specific feature extraction 
technique.

Closed-loop evaluation measures
We have used several metrics to evaluate the closed-loop decoding 
performance: success rate as the number of correct trials completed 
within a fixed amount of time, time required for the cursor to reach 
the target, the path efficiency as measured by the ratio of path length 
to straight-line length, the instantaneous angular error that captures 
the angle between a vector pointing towards the target and the instan-
taneous velocity of the cursor, accuracy (how well the cursor tracks 
participant intentions) and blinded queries to research participants to 
evaluate responsiveness (how quickly the cursor responds to partici-
pant intentions) (Fig. 2). In addition, for the grid task, we have included 
the bit rate in our findings. The calculation of the bit rate is outlined 
below7,81 (Supplementary Video 2):

B =
log2(N) ×max(Sc − Si,0)

t (17)

where N  is the number of total targets on the screen, Sc is the number 
of completed trials (correct selections), Si is the number of incomplete 
trials (incorrect selections), and t is the time elapsed in seconds. Moreo-
ver, we have evaluated the computational overhead by tracking how 
much time is required to compute each prediction’s update. With this 
array of metrics, we could build a more complete picture of the perfor-
mance and computational consequences of our design choices and 
their impact on the participants’ user experience and preference.

Closed-loop testing
The ability to test the FENet using neural recordings during develop-
ment and operation with a human participant during test and vali-
dation is critical to the success of FENet. Our testing of the feature 
extraction techniques included both data-driven measurements of 
performance and quantitative and subjective feedback provided by 
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human research participants during our double-blind testing. We have 
used the double-blind testing to capture quantifiable and subjective 
performance metrics of the algorithms being tested for each of the 
feature types (TCs, WTs and FENet). In each session, these two feature 
extraction techniques (hereafter techniques A and B) were selected 
for evaluation. One batch consisted of an open-loop training run with 
64 trials to parameterize A and B, a single closed-loop re-training run 
with 64 trials to re-train A and B decoders, and two closed-loop runs 
per algorithm each with 96 trials (four total closed-loop runs, with A 
and B shuffled). Each run lasted approximately 3–5 min, for a total of 
15–25 min per batch. We performed two batches in each session with 
at least a 10 min break between and alternate the starting algorithm. 
The participant and researchers had been told which algorithm was 
being used (‘A’ or ‘B’) but not what A or B were. After each batch, we 
queried the participant to capture subjective experience and prefer-
ence in each session.

Computational cost of FENet
To determine the computational complexity of various FENet archi-
tectures, we quantify the total count of multiplicative and additive 
operations performed for the feature extraction within the network. 
Assume that Si, ki and si are input size, kernel size and stride of the ith 
feature engineering module of FENet, respectively. The size of the input 
for the ith feature engineering module of FENet can be calculated as 
below48:

Si = ⌊
Si−1 +max (ki − si,0) + (ki − 1) − ki

si
⌋ (18)

where max (ki − si,0) and (ki − 1) represent the left and right paddings, 
respectively. Then, we can calculate the cost for all the FENet layers as 
follows:

Cost =
n−1
∑
i=0

2kiSi (19)

Given that n represents the quantity of feature engineering mod-
ules within the FENet, it is necessary to consider the dual cost incurred 
by both the upper and lower branches of these modules. As such, the 
computational cost is effectively doubled to encompass the collective 
operations of these components.

Algorithmic implementation requirements
We used PyTorch (version 1.14.0), a deep-learning application pro-
gramming interface for Python (version 3.10)82, as the programmati-
cal framework to train and operate neural networks. We configured 
PyTorch to use CUDA, a parallel computing platform and program-
ming model developed by NVIDIA, which can accelerate many of 
the computations involved in training neural networks with com-
mercially available graphics processing units (GPU)83. For offline 
training and evaluation of the FENet, we used a single Tesla V100 
GPU83, and for the closed-loop runs, we used a single NVIDIA GeForce 
RTX 3080 GPU83.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The behavioural and neurophysiological data are archived in the Divi-
sion of Biology and Biological Engineering at the California Institute 
of Technology. The broadband neural data are confidential and hence 
cannot be publicly shared. The raw and analysed data generated during 
the study are available for research purposes from the corresponding 
authors on reasonable request.

Code availability
The codes used for training and inference of FENet are available via 
GitHub at https://github.com/BenyaminHaghi/FENet. Codes used for 
analysing and displaying the results presented in this study are available 
from the corresponding authors on reasonable request.
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Table 1. FENet parameters used for the BMI experiments
Number of convolutional layers 7
Convolutional filters size per layer 40
Zero-padding length for each module 39
Convolution filters stride 2
Convolution filters number of input channels 1
Convolution filters number of output channels 1
Learning rate ( ) 0.1
Number of parameters 560

Extended Data Fig. 1 | Closed-loop training and pipeline, and architecture and 
performance of the BCI system. (a) Closed-loop training and pipeline. First, we 
record a block of open-loop centre-out data that includes 64 trials to train PCA for 
common average referencing and the decoders. Then, we re-train the decoders 
by recording a block of closed-loop centre-out data for the total of 64 trials. Next, 
we record a block of double-blind closed-loop centre-out data (Supplemental 
Video 1) and a block of double-blind closed-loop grid data (Supplemental Video 
2) for closed-loop control performance evaluation, which each includes 96 trials. 
We switch between the feature extraction techniques A and B every 16 trials for 

all steps. In the middle, we ask the participant’s preference regarding the feature 
extraction techniques A and B. (b) The architecture of the BCI system includes the 
input broadband neural data, feature extractor, decoder, and the output.  
(c) Adding an internal fully connected layer as the last layer of the FENet instead of 
applying PLSR for dimensionality reduction. (d) Parameter of the FENet. (e) The 
performance and (f) the average performance of the FENet for JJ when partial least 
square (PLSR) or a fully connected layer (FC) are used for the feature dimensionality 
reduction. Shaded region shows the closed-loop sessions. The band in each time 
series shows the range of 95% confidence interval of a LOESS84,85 fit.
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Extended Data Fig. 2 | Drop in performance correlated with degradation of the recording quality for JJ. (a) Sorted neural waveforms for each electrode on the 
recording array shortly after implantation in 2019. (b) Similar to a, but taken after several years of implantation in 2022. (c) Illustration of how the peak-to-trough 
amplitude of extracted waveforms decreases over lifetime of the array.
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Extended Data Fig. 3 | FENet does not rely on the low-frequency (< 250 Hz) 
local-field potentials to achieve its enhanced decode performance. To examine 
if FENet is using local field potential (LFP) for its long-term stability, we filtered 
the broadband data recorded from the closed-loop sessions before extracting 
the FENet features by using the high pass filters with the cut-off frequency 
of 80 Hz and 250 Hz, respectively. We have used an 80 Hz filter since window 
size of 30 ms used for JJ is small enough to assume that the lower frequency 
activities are excluded from the broadband neural activity in the 30 ms window. 
Moreover, to mitigate potential residual 60 Hz noise, we established a lower 
cutoff frequency of 80 Hz. (a) the performance of linear decoder operating on 
FENet slightly drops per session and (b) on average when we filter data using a 
high-pass filter with the cut-off frequency of 250 Hz compared to the case that 
the cut-off frequency of the high-pass filter is 80 Hz, which shows FENet is not 

directly affected by the information that is extracted from the LFP band. (c, d) we 
conducted a comprehensive evaluation of the effect of PLSR on the performance 
of linear decoder operating on FENet’s using all 54 sessions of participant JJ. 
We compared FENet’s performance with and without Partial Least Squares 
Regression (PLSR) applied to the top 40 electrodes in these sessions. We selected 
the top 40 electrodes to mitigate overfitting in the linear decoder, particularly in 
cases where PLSR is not applied. The results presented in this figure demonstrate 
that FENet, regardless of PLSR, effectively captures informative features 
from the broad neural data. The application of PLSR serves to reduce feature 
dimensionality and prevent overfitting of the decoders when working with 
limited neural data from human participants per session. The band in each time 
series shows the range of its 95% confidence interval of a LOESS84,85 fit.

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering

Article https://doi.org/10.1038/s41551-024-01297-1

P < P < P <

0 .2 0 .1 0 .0 0 .1 0 .2 0 .3
M agnit ude Difference

0

1

2

3

4

5

6

7

8

9

N
um

b
er

of
Ch

an
n

el
s

0 .6 0 .4 0 .2 0 .0 0 .2 0 .4
Phase Difference

0

1

2

3

4

5

6

7

8

9

10

11

N
um

b
er

of
C

ha
nn

el
s

0 .0 4 0 .03 0 .02 0 .0 1 0 .00 0 .01 0 .02
M agnit ude Difference

0

1

2

3

4

5

N
um

be
r

of
Ch

an
ne

ls

0 .10 0 .05 0 .00 0 .05 0 .10
Phase Difference

0

1

2

3

4

5

6

7

8

N
um

be
r

of
Ch

an
ne

ls

-0 .0 3 0 .0 0 0 .0 3 0 .0 5 0 .0 7 0 .1 0 0 .1 2 0 .1 5 0 .1 7
M agnit ude Difference

0

1

2

3

4

5

N
um

be
r

of
Ch

an
ne

ls

1 .0 0 .5 0 .0 0 .5 1 .0 1 .5
Phase Difference

0

1

2

3

4

5

6

N
um

be
r

of
Ch

an
ne

ls

Linear Decoder

Linear Decoder

a

f

b

d e

g

c

ih j

Extended Data Fig. 4 | Open-loop single-electrode performance of linear 
decoder operating on FENet, WTs, and TCs. (a-c) Comparison of the cross-
validated R2 of linear decoder for FENet, WTs, and TCs as different feature 
extraction techniques on all 192 neural channels (electrodes) of participant JJ’s 
2019 sessions. The dashed line shows line y = x. The red dots show the electrodes 
with R2 greater than 0.1 in at least one of the feature extraction techniques and 
the blue dots are the electrodes with R2 smaller than 0.1 for both techniques. 
Analysis is performed on red electrodes that carry more information about 
movement kinematics. The reported black, red, and blue numbers demonstrate 
the percentage of electrodes in each side of y = x for all the dots, red dots, and 
blue dots, respectively. The percentage of dots on each side of the line y = x shows 
the number of electrodes in favor of the corresponding feature extraction 
technique. The t-test statistics have also been reported to show the confidence 

level of the reported statistics. According to this analysis, FENet-based features 
improve the decoding performance of each single electrode in term of R2 
compared to TCs and WTs. (d) To compare the preferred direction and tuning 
properties of the same electrode in two feature extraction technique, we trained 
a linear decoder on feature that is extracted from that similar electrode for each 
feature, and we have reported the magnitude and angle difference between the 
vectors that are generated by the coefficients of the trained linear decoders. (e-j) 
Comparison of the single electrodes tuning properties. We compared the 
parameters of linear tuning models for same electrode between two features. 
Although the feature extraction techniques are inherently different, activity of a 
similar electrode maintains its preferred direction independent from a specific 
feature extraction technique. The phase difference is shown in radian. (e, f) FENet 
vs. TCs, (g, h) FENet vs. WTs, (i, j) WTs vs. TCs.
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Extended Data Fig. 5 | The impact of modifying window sizes on decoder 
performance subsequent to averaging the extracted features across larger 
temporal windows. FENet performance is robust against the change of the 
recording window size length in the centre-out trajectory task. (a) The averaged 
R2 of a linear decoder operating on FENet and TCs when we increase the feature 
extraction window size, which has a smoothing effect on the extracted features. 
The solid curves show the performances for FENet, and the dashed curves show 
the performance for the TCs. The blue curves, the red curves, and the black 
curves show the performance of the feature extraction techniques on the neural 
features extracted from the neural data recorded from all the electrodes, 
electrodes of M1, and electrodes of PPC. FENet maintains its superior 

performance over TCs when we increase the feature extraction window size in 
our trajectory task. (b) The average R2 difference between the curves in fig. a. The 
band in each time series shows the range of its 95% confidence interval of a 
LOESS84,85 fit. (c) here we measure how our crossNobis distance metric compared 
between sorted neurons and FENet as a function of window size. At small window 
sizes (for example, 50 ms) we see comparable benefits of FENet over sorted units. 
However, as the size the window increases, the relative benefit of the FENet is 
reduced. (d) The explanation of the high frequency and the between trial 
variability of the kinematic prediction. The black curve shows the ground-truth 
movement kinematics, and the gray curve shows the decoder prediction.
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Extended Data Fig. 6 | Training and testing FENet. Training and testing FENet on 
(a) top 25, top 50, or top 75 electrodes, (b) on top 25, mid 50, or down 75 electrodes. 
These figures show that features generated by a FENet optimized on the 50 top 
electrodes have higher averaged performance and is more generalizable to the 
electrodes that were excluded from training compared to the other feature 
extraction techniques and parameters. (c) Number of sessions needed to train the 
FENet. We have changed the number of FENet training sessions from 1 to 10 for 
each left-out test session. We pick these training sessions from all the available 
training sessions randomly and repeat this process 10 times for each left-out test 
session to report the cross-validated performance. This figure shows that the 
performance of the linear decoder saturates by using about 7 sessions for training. 
Shaded regions show the 95% confidence intervals. (d) The single and (e) the 
cumulative PLSR generated features performance. The direction of arrows in  
(d) show the decrease in the performance of the linear decoder moving from best 
to worst PLS extracted features for FENet (red) and WTs (blue) compared to TCs 
(black). The direction of arrows in (e) show the increase in performance as more 
PLS features are included per electrode for decoding. To pick the optimum 
number of features per electrode for FENet and WTs, we compare the 10-fold 
cross-validated R2 of single-electrode TCs, FENet, and WTs using different number 
of output features. Results are shown separately for each PLS-based latent 
dimension after sorting the electrodes by maximum per-session R2, and then 

averaging across the sessions. Electrodes were sorted based on the R2 value 
between the ground-truth and the linearly regressed movement kinematics using 
each single electrode. We have also shown the performance of a linear decoder 
operating on single electrodes’ cumulative PLS features, starting from the best PLS 
feature (for example, PLS feature 1, 1&2, 1&2&3, and so on). This figure shows that 
top two WTs and FENet PLS features are enough for the linear decoder to reach 
approximately maximum performance. We take advantage of this finding by 
limiting our features to the top two PLS features for our population-based 
reconstructions of movement kinematics. Limiting the number of features 
prevents an explosion of predictive features that can result in overfitting and poor 
generalization. (f) Neuron dropping curves. To generate neuron dropping curves, 
we randomly picked a group of electrodes from all the available 192 electrodes and 
tested the performance of the decoder on the selected electrodes. We have 
repeated this process 100 times for each group size. The group size can vary from 1 
(that is, a single electrode) to 192 (all electrodes). Neuron dropping curves were 
generated on the neural data of participant JJ on the sessions recorded in 2019. 
This figure shows the performance of FENets that are trained on top 25, top 50, top 
75, mid 25, and down 25 electrodes as well as the performance of the WTs and TCs. 
FENet trained on the top 50 electrodes shows superior performance and 
generalizability compared to the other techniques.
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Extended Data Fig. 7 | Relative Shapley values of the eight FENet-extracted 
features. (Upper panel) We conducted parameter sweeps using Bayesian 
optimization on the FENet model to assess the importance and impact of each 
hyperparameter in the model’s architecture. The results indicate a correlation 
between the R2 values of the linear decoder and the parameter values. Notably, 
the strides of the initial layers emerge as the most influential parameters, with 
smaller strides yielding higher performance. This is because smaller strides allow 
the convolutional kernels to cover a greater variety of local patterns in the input. 
Conversely, larger strides limit the coverage between consecutive kernel 
movements, resulting in the filters learning fewer patterns. Additionally, we 
observed that the kernel size becomes more crucial in later layers compared to 

the initial layers. This suggests that the inputs to later layers summarize 
information from multiple samples in the preceding layers. Consequently, the 
network becomes more sensitive to kernel size when combining richer features 
with different kernel sizes, as these layers combine samples providing less 
abstract information than deeper layers. (Lower panel) (Left) The cross-validated 
R2 of linear decoder operating on features extracted by using different FENet 
architectures vs the computational cost of these different architectures. (Right) 
The importance of each extracted FENet feature per electrode. We averaged the 
proportional Shapley values of all the electrodes over all the sessions for 
participant JJ.
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Extended Data Fig. 8 | Assessment of extracted features. To assess the 
extracted features obtained from various feature-extraction techniques, the 
offline data of the top electrode of three sample sessions 20190314, 20200928, 
and 20210312 were partitioned into eight centre-out task trials, each trial 
corresponding to a different target. We named the target with x > 0 and y = 0 
as Target0. The upper figures depict the average values of features obtained 
from multiple repetitions of a trial in their respective sessions, while the lower 
figures display the actual values of the extracted features during the initial 30 s 
of the recorded data. To identify the top electrode within a session, we organized 

electrodes based on their individual electrode R2 values, indicating the linear 
predictability of kinematics for each electrode using each distinct feature 
extraction technique. Subsequently, we randomly chose above-mentioned three 
sample sessions spanning 2019, 2020, and 2021 from those where the index of the 
top electrodes remained consistent across all feature extraction techniques. The 
results demonstrate the preservation of the fundamental tuning characteristics 
of the neurons, FENet generates higher values within tuning curves and achieves 
improved trial separability compared to other feature extraction techniques.
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Extended Data Fig. 9 | Gain of a sample set of FENet-trained convolutional 
filters across its feature-engineering modules. (Upper Panel) the gain of sample 
trained convolutional filters of FENet for all the feature engineering modules 
using JJ’s data compared to the gain of WTs, MUA, and HFLFP filters. In contrast 
to these conventional filters, FENet exhibits the ability to dynamically amplify 
distinct frequency bands during its training process, considering the encoded 
information within each specific frequency band. (Lower Panel) We present two 
single electrode input samples from FENet and WTs obtained during a sample 
session of participant JJ, labelled as 20190625. In these inputs, the coloured 
sections highlight the segments that hold greater importance in the predictions 
made by the linear decoder operating on each of FENet and WTs as the feature 

extraction technique. To represent the more crucial sections of the input signals, 
we calculated the average Shapley value across all samples of these inputs and 
coloured the samples with Shapley values exceeding this average. Additionally, 
the horizontal lines indicate the threshold used to extract Threshold Crossings 
(TCs) features for each input sample. These figures provide evidence that the 
trained FENet not only utilizes spike information (TCs) and Wavelet Transforms 
(WTs) to extract features, but also identifies local patterns more effectively. 
Moreover, FENet demonstrates superior ability to track rapid and abrupt 
changes in the input signals compared to WTs. These findings indicate that FENet 
captures more nuanced and localized information, resulting in enhanced feature 
extraction capabilities when compared to WTs and TCs.
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Extended Data Fig. 10 | FENet generalizes within and across splits. FENet 
generalizability analysis using centre-out task. R2 of training and testing FENet on 
different (a) time-periods and (b) brain regions for participant JJ and (c-d) for 
participant EGS. In each square, FENet is trained on the data coming from either 
the sessions/region corresponding to a specific year/brain region and is tested on 

the other year/region to evaluate generalizability of the FENet. (e) FENet trained 
on one human participant and tested on the other human participant (either 
participant JJ or EGS). These results suggest that FENet can generalize across 
different time periods, brain areas, participants, and electrodes. Linear decoder 
has been employed for all the analysis.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data were collected using Blackrock Microsystems Biopotential Signal Processor and Matlab software.

Data analysis The codes used for training and inference of FENet are available at https://github.com/BenyaminHaghi/FENet. Codes used for analysing and 
displaying the results presented in this study are available from the corresponding authors on reasonable request.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The behavioural and neurophysiological data are archived in the Division of Biology and Biological Engineering at the California Institute of Technology. The 
broadband neural data are confidential and hence cannot be publicly shared. The raw and analysed data generated during the study are available for research 
purposes from the corresponding authors on reasonable request.
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Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Neural recordings were made from participants: JJ, a 54-year-old male; EGS,  a 32-year-old male; and NS, a 62-year-old 
woman.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

The study design did not consider race, ethnicity and other socially relevant groupings.

Population characteristics We conducted our FDA-approved and IRB-approved BCI study with three participants: JJ, a 54-year-old tetraplegic (C5-C6) 
male; EGS, a 32-year-old tetraplegic (C5-C6) male; and NS, a tetraplegic 62-year-old woman with a complete C3/C4 spinal 
cord injury.

Recruitment The participants were recruited through Casa Colina and Rancho Los Amigos patient network of occupational therapists, 
physicians, former patients, and support groups. Recruiting tetraplegic patients is difficult, so self-selection bias was not 
considered heavily. 
 
Key inclusion criteria included: 
* Non-functional hand and arm strength bilaterally 
* Age 22–65 
* Able and willing to provide informed consent 
* Surgical clearance 
* Psychological support system 
 
Key exclusion criteria included: 
* Ongoing health concerns that put the participant at unnecessary risk for implantation surgery and implant maintenance.

Ethics oversight The study and all procedures were approved by the Institutional Review Boards of the California Institute of Technology, the 
University of California, Los Angeles, Casa Colinas Hospital and Centers for Healthcare, the University of Southern California, 
and Rancho Los Amigos Rehabilitation Center.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes. Our sample sizes are similar to those reported in previous publications using 
similar experimental procedures.

Data exclusions No data were excluded from the analyses. 

Replication All experimental findings were replicated over multiple sessions, with the same results for each session.

Randomization Participant randomization was not relevant, because a within-participant and multiple-session experimental design was used.  
The sequence of tasks was randomized for each run / session.

Blinding Blinding was not applicable, because the experiments did not involve different participant groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration NCT01958086 and NCT01849822

Study protocol Available at clinicaltrials.gov under the above registration numbers.

Data collection All data were collected at Casa Colinas Hospital and Centers for Healthcare and at Rancho Los Amigos Rehabilitation Center. Data 
were collected in 2–3 hour recording sessions, which occurred 1–4 times/week over 4 years for JJ, 5 years for EGS, and 6 weeks for 
NS.

Outcomes Primary outcomes: 
1. Accurate control of computer cursor. 
2. Absence of implant infection and irritation.
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