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Abstract
Objective. A crucial goal in brain–machine interfacing is the long-term stability of neural decoding
performance, ideally without regular retraining. Long-term stability has only been previously
demonstrated in non-human primate experiments and only in primary sensorimotor cortices.
Here we extend previous methods to determine long-term stability in humans by identifying and
aligning low-dimensional structures in neural data. Approach. Over a period of 1106 and 871 d
respectively, two participants completed an imagined center-out reaching task. The longitudinal
accuracy between all day pairs was assessed by latent subspace alignment using principal
components analysis and canonical correlations analysis of multi-unit intracortical recordings in
different brain regions (Brodmann Area 5, Anterior Intraparietal Area and the junction of the
postcentral and intraparietal sulcus).Main results.We show the long-term stable representation of
neural activity in subspaces of intracortical recordings from higher-order association areas in
humans. Significance. These results can be practically applied to significantly expand the longevity
and generalizability of brain–computer interfaces.
Clinical Trials
NCT01849822, NCT01958086, NCT01964261

1. Introduction

Brain–machine interfaces (BMIs) decode neural
activity to reproduce the user’s intention and assist
individuals with physical and neurological disabilit-
ies. In motor BMIs, the user commonly imagines or
attempts tomake amovement, and the corresponding
recorded neural activity is decoded to guide move-
ment in the intended direction, either on a computer
or a prosthetic [1, 2]. BMIs can use neural signals
acquired at different spatial and temporal resolution,
but these have tradeoffs in performance and stability.
Whereas single- or multi-unit recordings provide the
highest information content, these recordings suffer
from non-stationarity—different individual neurons
are recorded from day to day or even from morn-
ing to afternoon [3, 4]. This variation is caused by

several factors, includingmovement of the electrodes,
changes in the electrode–tissue interface, and degrad-
ation of the electrodes. Thus, as the neural features
used as inputs to the decoder become more different
from the initial training data, the performance of the
BMI degrades over time. As BMIs are implanted for
increasingly long durations [5, 6], the longitudinal
stability of intracortically recorded neural activity
is a central challenge to the practical utility of BMI
devices. Currently, long-term use of BMI devices is
only possible when users perform frequent retrain-
ing, often several times in a single day, to maintain
desired performance. Identifying a signal with suffi-
cient longitudinal stability could allow future devices
to eliminate frequent retraining, and facilitate BMI
use in cases where the loss of function over time may
eventually prevent the performance of training tasks
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(e.g. degenerative diseases such as amyotrophic lateral
sclerosis/motor neuron disease ALS/MND).

Changes in the single unit activity recorded on
each electrode of an array implanted in a target
population that are being recorded over time is a
common source of non-stationarity. However, the
lower-dimensional subspaces of the samepopulations
neural activity may remain relatively stable [7, 8]; we
investigate this intriguing possibility in the context of
BMI decoding. Alternative neural signals such as the
local field potential have been observed to be more
stable over time [9, 10]; however, the tradeoff is a
reduction in information content compared to single
unit activity, which ultimately limits performance.
Therefore, the most promising solution currently
being investigated is to use ‘latent signals’ for BMIs.
Latent signals are derived from low-dimensional sub-
spaces of the original high-dimensional single- or
multi-unit neural activity (MUA), and they have been
shown to preserve information content while min-
imizing non-stationarity [11–15]. Most stable lat-
ent spaces have so far been identified and validated
primarily in longitudinal recordings of non-human
primate primary sensorimotor cortices. In this paper,
we investigate the longitudinal stability of these latent
signals in two human participants, for whom neural
signals were recorded from higher order areas in pari-
etal cortex over several years of performing a BMI
task [16, 17]. Specifically, we demonstrate that the
neural subspace of imagined reaches in a center-out
task remained remarkably stable in posterior parietal
cortex.

2. Results

Data were collected on 143 and 73 unique days,
aggregated over a total period of 1106 and 871 d, for
participant 1 [1] and 2 [18], respectively. Participant
1 attempted reaches in 4 directions while MUA
was recorded from Brodmann Area 5 (BA5) and
the Anterior Intraparietal Area (AIP). Participant 2
attempted reaches in 8 directions while MUA was
recorded from the junction of the postcentral and
intraparietal sulcus (PC-IP) (figure 1(A)). We use
only the ‘training’ trials for longitudinal analysis,
without any decoder present, to ensure the data were
directly comparable from day-to-day [19]. During
these trials, participants imagined moving their arm
to follow the movement of an on-screen cursor. To
process the neural data, we adapted methods estab-
lished in non-human primates [12]. First a latent sig-
nal for each day on which the experiment occurred
is calculated by performing Principal Component
Analysis (PCA) [7] on all trials that day. The lat-
ent signal is then aligned for all pairs of days using
Canonical Correlation Analysis (CCA) [20]. A Linear
Discriminant Analysis (LDA) was used to classify the
target locations (figure 1(B)). An LDA model was
trained using data from Day N and tested within

day (N on N) using leave one out cross validation
(LOOCV). This analysis was then repeated for every
possible pair of training day N and testing day M.
Further materials and methods information can be
found in the Methods section of this manuscript.

When decoding the MUA signal, we observe
good decoding accuracy (figure 2(A), MUA—red)
within the same day, but this accuracy quickly
degrades as the number of days between training
and testing day increases (figure 2(A), MUA—black).
Intriguingly, aligned latent neural activity space sub-
stantially improves the accuracy (figure 2(A), Latent).
In particular, across all pairs of days, the decoding
performance that can be achieved is higher from the
latent signal (mean ± SD, AIP: 51.2 ± 8.38%, BA5:
63.7 ± 12.0% and PCIP: 45.8 ± 8.63%) than that
achieved with MUA (mean± SD, AIP: 35.4± 11.1%,
BA5: 34.6 ± 12.1% and PCIP: 25.5 ± 11.8%) (all
differences p < 0.001, Wilcoxon Sign Rank test,
Bonferroni corrected) (figure 2(B)). Further, the
across-day training produces a comparable perform-
ance compared to within-day using aligned latent
data. Across all recording electrode arrays, the cor-
relation between performance and time between the
pairs is smaller for latent signals (AIP r = −0.066,
BA5 r = 0.020, PCIP = −0.033, Pearson’s linear cor-
relation coefficient) than for MUA (AIP r = −0.12,
BA5 r = −0.30 PCIP r = −0.29, Pearson’s linear
correlation coefficient). To summarize these results,
we calculate the ratio of performance between all
the within-day models and all the across-day mod-
els for latent and MUA activity. A ratio of 1 repres-
ents a comparable result, a value greater than one
would mean that across-day pairs performed bet-
ter than within-day pairs and vice versa for val-
ues below 1 (figure 2(C)). Here we see that in all
cases the ratio of latent signals is higher than MUA
demonstrating the aligned latent signal across days
has significantly increased stability compared to the
MUA activity (p < 0.001, Wilcoxon signed rank
test, Bonferroni corrected. Participant 1 N = 20 449,
Participant 2N = 5329). Decoding performance after
only performing PCA, without CCA, leads to qualit-
atively the same results as the decoding performance
on the raw MUA. This highlights the CCA step as the
major contributor to the longitudinal performance of
the latent aligned signal.

In this task, the participants were not required
to learn anything novel, so we do not expect neural
activity changes related to learning. However, the
repetitive nature of the task and the amount of time
spent performing it may still alter the brain activ-
ity representing the task over time. To investigate the
way in which the task is represented in the latent sig-
nal over time, we calculated the Principal Subspace
Angle (PSA) [21, 22] between all pairs of days in par-
ticipant 1 (figure 3(A)). This angle reflects the mag-
nitude to which the subspaces in the pair must be
rotated to be maximally correlated, which is one way
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Figure 1.Methods. (A) The neural signal was recorded on all days of the task using the same microelectrode arrays (Blackrock
Neurotech). Arrays were implanted in the anterior intraparietal area (AIP) and Brodmann area 5 (BA5) of participant 1, and the
junction of the postcentral and intraparietal sulcus (PC-IP) in participant 2. (B) Data were arranged in a tensor of multi-unit
activity (MUA) on each channel, of each trial completed during the duration of the study. All trials within a day were grouped and
a pair of days was selected for further analysis (e.g. day N or M). For each day, the latent neural data was calculated using principal
component analysis (PCA). The latent data were aligned by canonical correlation analysis (CCA), and the magnitude of the
alignment was calculated as the principal subspace angle (PSA).

to measure the extent to which CCA rotates the lat-
ent neural data to align day pairs [23]. A smaller
PSA indicates a more similar representation between
pairs. Because participant 1 had two arrays in dif-
ferent functional areas, we controlled for changes in
the health of the array, which were not significantly
different for the two arrays over time (see methods
figure 1(C)). We divided up the data into early and
late periods (methods figure 1(A)), where late was
defined as the resumption of the experiment after a
significant break (akin to a ‘washout’ in the famili-
arity of the task). We did not perform this analysis
in participant 2 since there was no prolonged gap
(>150 d) in data collection to compare early vs late
day pairs (see methods). Over all pairs of days in par-
ticipant 1, the variability in PSA in BA5 was smal-
ler than for AIP (figure 3(B) left column). We then
focused on close pairs of days within the early and
late phases of data collection, those with a differ-
ence of only up to 10 d (figure 3(B) right column).
Interestingly, after the break in the experiment, we
find a significant difference in the representation of
the data across these relatively close day pairs in only
area AIP and not area BA5 (p < 0.001, Wilcoxon
Signed Rank Test). This finding indicates a more
stable intrinsic representation of reaching in area
BA5 than AIP.

3. Discussion

Here we have demonstrated the stable representation
of neural activity in subspaces of human intracor-
tical recordings over several years. This result valid-
ates methods of aligning latent spaces developed in
non-human primates during actual reaching [12, 24,
25], here applied successfully in classifying imagined
reaches by humans. Furthermore, we have extended
the finding of stable subspaces beyond the primary
sensorimotor cortices into higher-order association
areas in humans. The aligned latent signal performs
best in decoding overall in each site, but the mag-
nitude of the improvement reduces as the record-
ings come from more cognitive brain regions. We
see the same effect in the PSA, where the variabil-
ity in representation increases in the more cognitive
brain region. We hypothesize that this trend is due to
an increased flexibility in neuronal processing facil-
itating higher order/conceptual aspects of reaches in
AIP compared to a more fundamentally engrained
processing in the lower order sensorimotor control
of a limb in BA5. Evidence for higher order con-
trol in parietal cortex has also recently been demon-
strated in non-human primates. Recent comparisons
of decoding accuracies in reaching tasks using sig-
nals from macaque V6A/PEc/PE areas, which show a
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Figure 2. Classification decoder accuracy for two human participants. (A) Left column: the performance of the LDA classifier
using the raw multi-unit activity (MUA) from the brain regions AIP (top), BA5 and PCIP (bottom). The red line shows the
classification accuracy when the data from the same day (N on N) is used for training and testing with leave-one-out cross
validation. The black line shows the classification accuracy when data from session day N is used for testing, but training is always
performed on data from a single day (in this example day 1). Shading shows the standard deviation, dotted line shows the chance
level for classifications. Right column: the same analysis as the left column but using the latent aligned data. Any breaks in data
recording are shown in supplementary methods figure 1. (B) The decoding accuracy of every pair of days for MUA and Latent
Aligned activity. (C) The ratio of performance between within day and across day decoding, error bars show standard deviations,
stars indicate significance.

Figure 3. Principal subspace angles. (A) The principal subspace angle (PSA) calculated between all pairs of days for AIP (top) and
BA5 (bottom). (B) Left column: the PSA between each pair of days, colored according to the early and late period (methods
figure 1(A)) Right column: violin plots of only the day pairs where the difference between days is 10 or less, grouped into the early
and late period.
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lower decoding accuracy, indicating less information,
is retrievable from PE with respect to more posterior
cortex areas V6A/PEc [26].

There are few human intracortical BMI datasets
available to validate the performance of latent sig-
nals over substantial periods of time in the same task.
Participants enrolled in intracortical clinical trials
are typically encouraged to perform a much broader
range of tasks, with each requiring little to no train-
ing. Consequently, far fewer trials are available for
any specific experimental paradigm. Chronic exper-
iments exploring the human cortex offer a unique
opportunity to study various changes in neural cir-
cuits over extended periods of time. Based on our
results, we encourage the design of future studies to
facilitate longitudinal task data collection and data
collection from cortical sites beyond the traditionally
used primary motor and sensory cortices. Our ana-
lysis sought to identify and validate stable signals that
can be utilized longitudinally, a real time implement-
ation of this method goes beyond the scope of this
manuscript. A limitation of this method in real time
implementation is the requirement for the entire data
set of past and future data to be available. Alternative
methodswould be required for the stable signals iden-
tified here to be implemented in long-termBMIs with
minimal retraining, however such methods are being
developed [25]. Crucially, assumptions of signal sta-
bility based on the evidence presented here can be
utilized in future studies to pave the way for BMIs
to be used in many more cases; over longer periods,
by individuals who lose the ability to retrain due to
degenerative condition, or those who suffer injuries
that preclude electrode implants in primary sensor-
imotor cortex. With the identification of such robust
features, one promising direction for futureworkmay
be to enable the development of generalized BMIs
that can be trained on data from individuals other
than the eventual intended user [27].

4. Materials andmethods

All procedures were approved by the Internal
Review Boards of California Institute of Technology,
University of Southern California, Rancho Los
Amigos National Rehabilitation Center, University
of California Los Angeles and Casa Colina Hospital
and Centers for Healthcare. Informed consent was
obtained from all participants after the nature of
the study and possible risks were explained. This
work was performed as part of Clinical Trials:
NCT01849822, NCT01958086, NCT01964261.

4.1. Participants
Participant 1 was a 32 year-old tetraplegic male at
the time of implantation. He was implanted with two
microelectrode arrays on 17 April 2013. The elec-
trodes were implanted in BA5 and the AIP. He had
a complete lesion of the spinal cord at cervical level

C3-4, sustained 10 years earlier, with paralysis of
all limbs. Participant 2 was a 59 year-old tetraplegic
female at the time of implantation. Shewas implanted
with two arrays but only one was used in this study,
at the junction of the post-central and intrapari-
etal gyrus (PC-IP) on 29 August 2014. The other
array was not functional. She had a C3-C4 spinal
lesion (motor complete) sustained 7 years earlier,
and retained movement and sensation in her upper
trapezius, without control or sensation in her hands.
During their enrollment, the participants performed
many different tasks. The data for the analysis presen-
ted in this manuscript were collected on 143 and 73
unique days, over a period of 1106 and 871 d, for par-
ticipant 1 and 2, respectively.

4.2. Task and data collection
The center out task was intended to allow the par-
ticipants to spatially position a cursor on a com-
puter screen. Targets were presented one at a time
on the LCD display. The LCD monitor was posi-
tioned approximately 184 cm from the subject’s
eyes. Stimulus presentation was controlled using
the Psychophysics Toolbox for MATLAB. During
recording-only sessions, without any decoder, a cir-
cular cursor on the screen would move automatically
from the center to one of either 4 (participant 1) or
8 (participant 2) targets arranged radially around the
center point. Following a 250 ms delay relative to tar-
get onset, the cursor moved in a straight line directly
to the target with an approximately bell-shaped velo-
city profile. Each trial lasted 3 s. The number of tri-
als completed by the participants on each day during
the study is shown in methods figures 1(A) and (B).
Participants were asked to imagine making move-
ments of the arm to mimic the movements observed
on the screen.

The NeuroPort System (Blackrock Neurotech,
UT, USA), comprising the arrays and neural sig-
nal processor (NSP), has received Food and Drug
Administration (FDA) clearance for <30 d of
acute recordings. For this study we received FDA
Investigational Device Exemption clearance for
extending the duration of the implant. The health and
performance of the arrays was assessed as the mean
impedance across all electrodes on each array, recor-
ded on each day of the experiment. Impedance data is
available for participant 1 only (methods figure 1(C)).
MUAwas amplified, digitized, and recorded at 30 kHz
with the NeuroPort NSP. The threshold for calcula-
tion of MUA spikes was −3.5 ∗ root mean squared
voltage, calculated over each recording session. Data
was organized into a three-dimensional tensor; The
first dimension was the MUA binned into non-
overlapping 50 ms windows. The second dimension
was the number of electrodes (96 for each array). The
third dimension was the index of trials ordered chro-
nologically from the first to last over the entire study
period.
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4.3. Analysis
The analysis methods used in this manuscript extend
the analysis of Gallego and colleagues [12] who
demonstrated success in long-term decoding from
primatemotor cortex recordings. Data from each par-
ticipant and each array was processed separately. The
analysis was completed identically between all pairs
of all days in which the participants completed the
center out task. For the following description of the
analysis two such days are represented as day M and
day N.

Initially the same number of trials, containing
equal presentation of all targets, are taken on each day.
On days with different numbers of trials, we used all
the trials on the day with the fewer trials and then
randomly selected the same number of trials from the
other day (A minimum of 5 and 6, and a maximum
of 32 and 18 (participant 1 and participant 2 respect-
ively) repetitions of each of the 4 targets were avail-
able from the individual day sessions). To ensure all
the trials for a pair of days were used, the entire ana-
lysis was repeated 1000 times, each iteration using a
different randomly selected set of trials. All electrodes
(96) and all time bins were included for all trials. For
each day this produced a (electrode × time × trials)
matrix. The data was concatenated across trials and
then dimensionality reduction was performed using
PCA (‘pca’ function, Matlab 2021b). We reduced the
data to 10 dimensions, following previous analysis,
but confirmed that the results did not qualitatively
change using a larger range of values. The result of
the PCA analysis was a (10× time∗trials) matrix. We
call this the ‘latent data’. The latent data from each
day in the pair was then aligned using CCA (‘can-
oncorr’ function, Matlab 2021b). This produced a
(10 × time∗trials) matrix. We call this the ‘aligned
latent data’. The data was then split back into indi-
vidual trials (10 × time × trials) and the activity in
each trial (‘time’ dimension) was averaged produ-
cing a (10 × 1 × trials) matrix for each day M and
N. This was then used to calculate a linear regres-
sion model for classification (‘fitlm’ function, Matlab
2021b). The aligned latent data were used as the data
and the target labels for each trial were used as the
model. For within day calculations of classification
accuracy a LOOCV was used to calculate classific-
ation accuracy. For calculating classification accur-
acy across days, the entire data from day M was used
to train the LDA model, which was tested on the
entire dataset from day N (and vice versa). To cal-
culate the PSA we followed the method presented by
Knyazev and colleagues [21] (‘subspacea’ function,
MATLAB Central File Exchange, Matlab 2021b). We
present data from the first PSA, but we note the res-
ults remained qualitatively consistent when summing
over all PSAs calculated from the data.

We perform the PSA analysis on participant 1
due to: (1) Two electrode locations were recorded.
In this case AIP and BA5 control for each other in

factors related to changes in electrode–tissue inter-
face that could influence the results (see supplement-
ary methods figure 1(C)). We assume that since this
crucial metric is consistent between the two arrays
analytical differences can be explained by the dif-
ferent neurophysiology of the regions. (2) Two dis-
tinct periods of time in the experimental collec-
tion regime (early and late—supplementary methods
figure 1(A)) can be identified. The break in recording
was imposed by changing priorities in experimental
data collection during the participants’ enrollment.
It can also be identified analytically with a threshold
of at least 150 d elapsing with no task practice, and
the average number of trials per day falling below
40. Because of differences in the data collection of
the two subjects these conditions were not met in
participant 2.

Data availability statement

All data that support the findings of this study are
included within the article (and any supplementary
files).

Code availability

All analyses were implemented using custom Matlab
(The Mathworks Inc.) code. Code to replicate the
main results are available upon reasonable request.
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