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ABSTRACT 

The lateral intraparietal cortex (LIP) located within the posterior parietal cortex (PPC) is an important area for the 
transformation of spatial information into accurate saccadic eye movements. Despite extensive research, we do not fully 
understand the functional anatomy of intended movement directions within LIP. This is in part due to technical 
challenges. Electrophysiology recordings can only record from small regions of the PPC, while fMRI and other whole-
brain techniques lack sufficient spatiotemporal resolution. Here, we use functional ultrasound imaging (fUSI), an 
emerging technique with high sensitivity, large spatial coverage, and good spatial resolution, to determine how 
movement direction is encoded across PPC. We used fUSI to record local changes in cerebral blood volume in PPC as two 
monkeys performed memory-guided saccades to targets throughout their visual field. We then analyzed the distribution 
of preferred directional response fields within each coronal plane of PPC. Many subregions within LIP demonstrated 
strong directional tuning that was consistent across several months to years. These mesoscopic maps revealed a highly 
heterogenous organization within LIP with many small patches of neighboring cortex encoding different directions. LIP 
had a rough topography where anterior LIP represented more contralateral upward movements and posterior LIP 
represented more contralateral downward movements. These results address two fundamental gaps in our 
understanding of LIP’s functional organization: the neighborhood organization of patches and the broader organization 
across LIP. These findings were achieved by tracking the same LIP populations across many months to years and 
developing mesoscopic maps of direction specificity previously unattainable with fMRI or electrophysiology methods. 
 
 
 

COMMON ABBREVIATIONS USED

CBV: Cerebral blood volume 
fUSI: Functional ultrasound imaging 
GLM: General linear model 
ips: Intraparietal sulcus 
LDA: Linear discriminant analysis 
LFP: Local field potential 
LIP: Lateral intraparietal area 

MIP: Medial intraparietal area 
MP: Medial parietal cortex 
PCA: Principal component analysis 
PPC: Posterior parietal cortex 
PRR: Parietal reach region 
ROI: Region of interest 
VIP: Ventral intraparietal area 
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MAIN 

The posterior parietal cortex (PPC) integrates visual information with other sensory modalities, represents possible 
action plans, and decides upon the optimal action for downstream execution1–3. Separate PPC regions preferentially 
encode different movement types4,5, or “effectors”. Lateral intraparietal area (LIP) preferentially encodes saccades6, 
parietal reach region (PRR) preferentially encodes limb reaches2, and anterior intraparietal area (AIP) preferentially 
encodes grasping movements7. These areas reveal an effector-dependent functional organization within PPC. 

It remains debated whether LIP possesses a mesoscopic functional organization for saccade directions5,8. Several studies 
have found that LIP’s response fields are spatially organized, with neighboring neurons having similar response fields9–13. 
However, the specific organization of these response fields remains debated8. This debate continues in part due to the 
limited field of view, sensitivity, and/or spatial resolution of existing recording techniques (Fig. 1A). fMRI can record 
whole brain activity, but lacks the spatial resolution and signal sensitivity to further refine our knowledge of LIP’s spatial 
organization (Fig. 1B). Intracortical electrophysiology can measure single neuron activity but cannot sufficiently sample 
or simultaneously record from large brain volumes, including primate PPC (Fig. 1D). Furthermore, it is difficult to align 
and reconstruct data recorded over many months, limiting our ability to observe anatomical patterns across many 
recordings. These limitations highlight the need for a sensitive technique to bridge the gap in spatial resolution between 
microscopic (e.g., single neurons) and macroscopic (e.g., whole brain) views of the primate cortex. 

Here, we use an emerging technique, functional ultrasound imaging (fUSI) to determine the mesoscopic, i.e., between 
microscopic and macroscopic, spatial organization of saccadic response fields within LIP. fUSI’s large field of view, 
excellent sensitivity, and high spatial resolution (Fig. 1A, C) are ideally suited to this task14–17. We recorded fUSI while 
two rhesus macaque monkeys (Monkey L and P) performed an oculomotor task. We found functionally distinct 
subregions within (dorsal-ventral) and across (anterior-posterior) coronal LIP planes where small mesoscopic patches of 
neighboring cortex encoded different movement directions consistently across months to years. These results fill a gap 
in our understanding of LIP’s functional organization and demonstrate that fUSI is a powerful tool for elucidating 
mesoscopic function in the brain. 

 

 

Fig. 1 – Functional ultrasound enables mesoscopic imaging of neural populations 
A. Spatial coverage, invasiveness, and spatial resolution for different large animal recording technologies. Spatial coverage: Largest 
dimension of brain volume sampling. MEA: multi-electrode array; Ca2+: calcium imaging; ECoG: electrocorticography; EEG: 
electroencephalogram; fNIRS: functional near-infrared spectroscopy; fMRI: functional magnetic resonance imaging; fUSI: functional 
ultrasound imaging. Panel modified with permission from Griggs and Norman et al. 202417. 
B. 1.5 mm isotropic fMRI. Each red box represents one voxel.  
C. 15.6 MHz 2D fUSI. Each red sheet represents one coronal imaging plane. Inset shows 100 μm x 100 x 400 μm voxel size.  
D. Utah array and Neuropixel 1.0 recording methods for recording from intraparietal sulcus. Inset shows size of Neuropixel 1.0 
electrodes (yellow). 

 

RESULTS 

Using fUSI, we recorded high-resolution changes in cerebral blood volume (CBV) from multiple PPC subregions as two 
rhesus macaque monkeys (Monkey L and P) performed memory-guided saccades (Fig. 2A). These areas included lateral 
intraparietal area (LIP), ventral intraparietal area (VIP), medial intraparietal area (MIP), Area 5, Area 7, and medial 
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parietal cortex (MP). During the task, each monkey fixated on a center cue, was cued with one of eight peripheral 
directions, remembered the cue location, and executed a saccade to the remembered location once the central fixation 
point extinguished.  

We used a miniaturized linear ultrasound transducer array capable of high spatial resolution (100 μm x 100 μm in-plane) 
and a large field of view (12.8 mm width, 128 elements, 100 μm spatial pitch, 16 mm depth penetration, 400 μm plane 
thickness)16,17. We recorded 1 Hz fUS images by positioning the transducer surface normal to the brain above the dura 
mater. We recorded from multiple evenly-spaced coronal planes of the left PPC (Fig. 2B, C). We centered the recording 
chamber over the intraparietal sulcus to record from as much of the posterior parietal cortex as possible, both medial-
lateral, but also anterior-posterior (Fig. 2B, Supplemental Movie 1, 2). 
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Fig. 2 – Monkeys performed memory-guided saccade task during fUSI acquisition. 
A. Memory-guided saccade task. A trial began with the monkey fixating on a center blue diamond. After the monkey fixated, a white 
circular cue was flashed in one of 8 peripheral locations. Once the center fixation diamond extinguished, the monkey made a saccade 
to the remembered cue location and maintained fixation on the peripheral location. If the saccade was to the correct location, the 
peripheral cue reappeared and the monkey received a liquid reward. 
B. 3D vascular maps for Monkey L and Monkey P. The field of view included the intraparietal sulci for both monkeys. White scalebar – 
1 mm. D – dorsal. V – ventral. L – lateral. M – medial. 
C. Coronal imaging planes in Monkey L and P. Position relative to estimated ear-bar zero (EBZ) overlaid on a NHP brain atlas18. 
Anatomical labels based upon Saleem et al. 201219. ls: lateral sulcus; cis: cingulate sulcus; ips: intraparietal sulcus. 
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Are there mesoscopic populations tuned to different directions? 
To identify mesoscopic populations tuned to different directions, we used a general linear model (GLM) to identify 
voxels that responded differently to the eight directions. In both monkeys, mesoscopic PPC populations had clear 
directional tuning. In an example session from Monkey P (Fig. 3A-C), most LIP voxels (>75%) showed directional tuning 
while <4% of voxels outside of the LIP showed directionally-modulated activity. Some regions experienced substantial 
increases in CBV from baseline (>20%) where the magnitude of the increase depended on the direction. Other regions 
displayed suppression from baseline for certain movement directions (Fig. 3B). To quantify the example regions’ tuning, 
we averaged the response to each of the directions at the end of the memory period across all the voxels in each ROI to 
create regional tuning curves (Fig. 3C). Different populations within a single coronal plane had different preferred 
directions and different widths of their tuning curves. Some ROIs were broadly tuned to the entire contralateral 
hemifield (Fig. 3B, C – ROI 1) while other ROIs were tightly tuned to a narrow window of directions (Fig. 3B, C – ROI 2). 
The example session from Monkey L displayed similar phenomena (Fig. 3D-F). Most voxels (>70%) within LIP displayed 
directional modulation and these voxels were clumped into multiple subpopulations with different tuning curves. These 
regional tuning curves within LIP had different preferred directions and tuning curve widths. For example, ROI 1 
displayed narrow tuning to 0° and 315° whereas ROI 2 displayed broader tuning to 45°, 90, and 135° (Fig. 3D-F). In 
Monkey L, the mid-MIP directly adjacent to the sulcus had some directionally tuned vascular response, but this activity 
did not penetrate deeper cortical layers. Including these MIP voxels, <4% of voxels outside of LIP showed directional 
modulation.  
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Fig. 3 – PPC contains multiple distinct directionally-tuned mesoscopic populations. 
A. Statistical parametric maps showing the average activity during the memory period. Voxel threshold determined by GLM F-test for 
voxels where q < 0.001 (FDR-corrected). White scale bar – 1 mm. Center arrows indicate the 8 directions tested.  
B. Event-related average of activity within each ROI. Each line represents one direction. The circular color scale indicates the direction 
of each line. Error shading shows SEM. Green shading shows timepoints used for calculating baseline and blue line shows timepoint 
used for analyzing memory response to the different directions. 
C. Tuning curves. Each line shows a cubic spline fit to the directional responses at the end of the memory period within each ROI. 
Error bars show SEM. 
D-F. Example session for Monkey L. Same format as A-C. 
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How consistent is this directional tuning within a session? 
Having observed clear mesoscopic populations with directional preference in both monkeys, we aimed to better 
understand the information content within these voxel subpopulations and the consistency of their responses from trial 
to trial. To this end, we performed decoding analyses for each example session. We trained a model to decode the 
intended movement direction on a subset of each example session’s trials and then tested how well the model could 
predict the intended movement direction on held-out test trials. If the model has statistically significant decoding 
accuracy on the test trials, it would demonstrate that the encoding of direction within the imaging field of view is 
consistent from trial to trial. For this decoding analysis, we used principal component analysis (PCA) to reduce the 
dimensionality of the fUSI data and linear discriminant analysis (LDA) to predict one of the eight movement directions 
using the PCA-transformed data. We examined the ability to decode the intended movement direction throughout the 
trial (Fig. 4) and found that we could begin decoding the intended movement direction significantly above chance 
(p<0.01; 1-sided binomial test) within 3 seconds of the directional cue onset (Fig. 4A, D). In both monkeys, the percent 
correct exceeded 50% (leave-one-out cross-validation; Monkey P – 59.6% correct, Monkey L – 54.1%). Missed 
predictions typically bordered the true movement direction (Fig. 4B, E). To quantify this, we present the mean absolute 
angular error between the predicted and true movement direction. As with the percent correct, the mean angular error 
reached significance (p<0.01; 1-sided permutation test) within 3 seconds of the directional cue. The mean angular error 
converged to <35° for both monkeys (Monkey P – 23.7°, Monkey L – 32.8°, Fig. 4A-bottom, D-bottom).  

We used the entire image at each timepoint to decode the intended movement direction on individual trials. One 
possibility is that the prediction is being driven by a few voxels that stay consistent while the other voxels fluctuate 
around. To understand which portions of the image, i.e., the vascular anatomy, contributed the most to the decoding 
performance, we performed a searchlight analysis. We moved a pillbox (200 μm radius) across the entire image and 
assessed the ability of each pillbox to decode the intended movement direction (Fig. 4C, F). In other words, we serially 
examine how each unique group of voxels contained within a 200-μm radius pillbox can individually decode the 
intended movement direction. To separate information contained within different brain regions, we only analyzed 
voxels on the same side of the sulcus for a given searchlight pillbox. As an example, a pillbox centered on an LIP voxel 
only contained LIP voxels whereas a pillbox centered on an MIP voxel only contained MIP voxels. We found that many of 
these 200-μm radius pillboxes, or voxel patches, could robustly decode the intended movement direction (p<0.01) with 
many of the voxel patches approaching 30° angular error (Fig. 4C, F). In other words, these searchlight results 
demonstrated that many PPC voxels encoded the intended movement direction and could drive accurate single-trial 
predictions. LIP contained the most informative voxels and these informative voxels overlapped with the same voxels 
identified with the previous GLM analyses (Fig. 3A, D). In both animals, a small number of voxels within MIP were within 
the 10% most significant voxels (threshold: Monkey L – p<0.005, Monkey P – p<10-5). In Monkey P, 7% of the most 
significant voxels were in MIP; in Monkey L, 9% of the most significant voxels were in MIP. These significant voxels 
within MIP were in the superficial cortical layers along the sulcus and did not extend into deeper cortical layers, 
matching the results from Monkey L’s GLM analysis.  
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Fig. 4 – Single-trial decoding of eight intended movement directions with high accuracy. 
A. Decoding performance as a function of time. Top plot shows percent correct. Bottom plot shows mean angular error. Dashed lines 
show chance level performance. Color of the line shows statistical significance (1-sided binomial test or permutation test). 
B. Confusion matrix of decoding represented as percentage (rows adds to 100%). 
C. Searchlight analysis. Top 10% of voxels with the lowest mean angular error. White circle – 200 μm searchlight radius. White line – 
1 mm scalebar. Masked voxels correspond to threshold of p<10-5. 
D-F. Decoding performance for Monkey L. Same format as A-C. Masked voxels corresponds to threshold of p<0.005. 
 
 
Are these mesoscopic populations stable across multiple days? 
In the example sessions, PPC subpopulations were robustly tuned to individual movement directions, but is the function 
in each population stable across time? In a previous paper, we showed that populations in PPC could be used to control 
an ultrasonic brain-machine interface even after 60+ days since training the decoder model, suggesting that PPC 
populations are stable across at least 1-2 months17. To extend this result and better understand the stability across many 
months to years, we collected data from the same coronal plane across 4 – 30 months. We then trained our decoder on 
one session’s data and tested its performance on other sessions from the same plane without retraining or calibrating it. 
We tested all combinations of sessions. We hypothesized that, if the subpopulations’ functions were constant across 
time, a decoder trained on one session would accurately predict intended movement directions on another session’s 
data from the same coronal imaging plane. 

In Monkey P, the decoder performed above chance level for over 100 days (Fig. 5A) and across all pairs of training and 
testing sessions (p<10-5; 36/36 pairs) (Fig. 5B). In Monkey L, the decoder performed above chance level for more than 
900 days between the training and testing sessions (Fig. 5D), an effect that persisted across nearly all pairs of training 
and testing sessions (p<0.01; 117/121 pairs) (Fig. 5E). Cross-validated decoding performance varied within each training 
session (diagonal of performance matrices; Fig. 5A, D), so we also present cross-session decoding accuracy normalized 
to each training session’s cross-validated accuracy. We did not observe any clear differences between the absolute and 
normalized accuracy measures. Interestingly, in Monkey L, the decoder trained on the March 13, 2021 session 
performed the best for three directions (contralateral up, contralateral down, and ipsilateral down) in the training set 
and continued to decode these same three directions the best consistently throughout the test sessions (Fig. 5D). We 
saw this pattern where the decoder could best predict certain directions, even when the training session had poor cross-
validated performance by itself (Fig. S1). We also observed in both monkeys that temporally adjacent sessions exhibited 
better performance (Fig. 5C, F). 
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In Monkey L, the performance was clumped into two temporal groups (before and after May 3, 2023). Was this change 
in performance due to physical changes in the imaging plane or due to changes in subpopulation function? Although we 
did our best to align our recordings to the exact same imaging plane from day to day, it is possible that alignment was 
imperfect and out-of-plane. Visual inspection revealed consistent macrovasculature, e.g. arteries, but inconsistent 
mesovasculature (Fig. S2A, D). Importantly, the physical changes would suggest that (a) we were decoding from slightly 
different neural populations and (b) small neighboring neural populations encode different directional information. To 
test our hypothesis that physical differences in imaging plane (and therefore differences in vascular anatomy) led to the 
decrease in decoder performance, we measured the similarity of the vascular anatomy across time using an image 
similarity metric: the complex-wavelet structural similarity index measure (CW-SSIM)20. The CW-SSIM clumped the 
vascular images into discrete groups (Fig. S2B, S2E), matching our qualitative assessment of image similarity. The 
similarity grouping also matched the pairwise decoding performance grouping in Monkey L (Fig. 5E). The decoder 
performance and image similarity were correlated (Fig. S2C, F). As image similarity decreased between the training 
session and each test session, so too did decoder performance. This supports our hypothesis that the decrease in 
decoder performance resulted from changes in the imaging plane rather than drift in each subpopulation’s tuning. 
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Fig. 5 – PPC stably encodes movement direction across many months to years. 
A. Example decoder stability for Monkey P. Trained the decoder on Day 0 data and tested the trained decoder on other sessions from 
the same imaging plane without any retraining. 
B. Decoder stability for training and testing on each session. ns – nonsignificant decoding performance (α = 0.01). Bold text 
represents example session shown in Fig. 5A. 
C. Mean angular error as a function of days between the training and testing session (absolute difference in time). Dashed line – 
Linear fit to data. *=p<10-2, **=p<10-4. 
D-F. Decoder stability for Monkey L. Same format as Fig. 5A-C.  
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How does mesoscopic population tuning change across anterior and posterior portions of PPC? 
Having demonstrated that, within an imaging plane, there are PPC subpopulations robustly tuned to individual 
movement directions and these subpopulations’ tunings are consistent across many months to years, we next asked 
how direction tuning varied across different anterior to posterior coronal imaging planes. We repeated the same GLM 
analysis for data acquired from coronal planes evenly spaced throughout the PPC (Fig. 2B, C, Supplemental Movies 1, 2) 
and found the peak preferred direction for every voxel (Fig. 6A). Several patterns appeared. First, each coronal plane 
contained LIP voxels with directional modulation. Some of these planes contained large, contiguous patches of activity 
while other planes contained multiple discrete patches of activity. Second, each anatomical plane in both monkeys 
contained multiple LIP subpopulations with different tuning properties. These different subpopulations were sometimes 
in discrete patches and sometimes in the same contiguous patch. Third, posterior planes encoded more contralateral 
upward movements while anterior planes encoded more contralateral downward movements. Fourth, in Monkey P, 
regions outside of the LIP contained directionally modulated voxels, including in medial intraparietal (MIP), medial 
parietal (MP), and Area 5 cortex. We did not observe any activity within Area 5 of Monkey L and only observed very 
superficial activity within MIP of a single coronal plane (-3.33 mm of EBZ). Unfortunately, Monkey L’s chamber was more 
lateral and did not contain the same posterior portion of MP where we observed activity in Monkey P. 

To further understand the directional encoding across different coronal planes, we extracted the directional-modulated 
voxels and created a beeswarm chart containing each voxel’s directional preference (Fig. 6B). As expected, certain 
directions within a given plane were over-represented, i.e., clumps of similarly tuned neurons in the beeswarm plot. The 
anterior-posterior gradient was still evident where more anterior planes had more voxels tuned for downwards 
directions while posterior planes had more voxels tuned for upwards directions. Most voxels encoded for contralateral 
movements (-90° to +90°) although there were some voxels that responded most strongly for ipsilateral movements. 
Each of the planes had broad and overlapping representation of contralateral movements. To better quantify these 
observations, we collapsed the voxels across planes (Fig. 6C) and found that >85% of tuned LIP voxels were contralateral 
preferring (Monkey P – 87.7%; Monkey L – 89.4%).  

Certain anterior/posterior coronal planes had better representation of specific directions, so we asked whether there 
would be any performance difference in fUSI decoders trained on the different anatomical planes. This would have 
translational implications if specific anterior/posterior regions were better for directional decoding. We applied our 
decoding analysis to every recorded session (Fig. S3A, B). In Monkey P, all sessions reached statistical significance (18/18 
sessions). In Monkey L, all but one session reached statistical significance (19/20 sessions). In Monkey P, the peak 
angular error within a session ranged from 17° to 55° (29.97° ± 2.32° mean ± SEM). In Monkey L, the angular error 
ranged from 33° to 85° (57.98° ± 3.35° mean ± SEM). There was no statistical difference (1-way ANOVA, α=0.01) 
between the percent correct or angular error depending on the plane (Fig. S3C). These results suggest that all 
anatomical LIP planes we sampled contained sufficient information to accurately decode at least eight intended 
movement directions on a single-trial basis.  

Dorsal (LIPd) and ventral (LIPv) LIP are believed to have different functions with LIPd being involved in planning eye 
movements while LIPv is involved in both attentional and motor processes21. According to theories of topographic 
encoding8, we would expect separate representations of movement directions within LIPd and LIPv. We observed no 
clear split in function at the middle portion of LIP, so we relied upon a previous definition of 53% sulcal depth to 
compare activity within LIPd and LIPv21. We found that anterior LIPd was more active than posterior LIPd. Middle LIP, 
i.e., junction of defined LIPd and LIPv, consistently demonstrated the most activity across all planes. To quantify this 
observation, we labeled the beeswarm chart with the depth from brain surface of each voxel (Fig. 6B). We did not 
observe any clear trends in the data to clearly distinguish functional differences between LIPd and LIPv. We additionally 
collapsed all the tuned voxels across planes and looked at their percent depth within the sulcus (Fig. 6D). Instead of 
observing clear separation between LIPd and LIPv, we observed one homogenous group with the most activity peaking 
at the boundary between LIPd and LIPv, suggesting that LIPd and LIPv may share a topographic representation and/or 
that they receive common shared inputs. 
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Figure 6 – Polar direction is topographically organized along anterior-posterior axis of LIP. 
A. Color overlays showing preferred direction for voxels with statistically significant difference in response for different movement 
directions. Threshold based upon GLM F-test where p < 0.01 (FDR-corrected). 
B. Preferred direction for all significant voxels within each coronal plane. Color represents depth from brain surface. Grey shaded area 
shows contralateral angles. 
C. Angular distribution of response fields within LIP. Gray shaded area shows contralateral angles. 
D. Depth of tuned LIP voxels. Gray shaded area shows approximate LIPd. 
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DISCUSSION 

Our results demonstrate that PPC contains subregions tuned to different directions. These tuned voxels were 
predominately within LIP and grouped into contiguous mesoscopic subpopulations. Multiple subpopulations existed 
within a given coronal plane, i.e., there were multiple preferred directions in each plane. A rough topography exists 
where anterior LIP had more voxels tuned to contralateral downwards saccades and posterior LIP had more voxels 
tuned to contralateral upwards saccades. These populations remained stable across more than 100 – 900 days.  

Sensitivity of fUSI 
We observed large effect sizes with changes in CBV on the order of 10 –30% from baseline activity (Fig. 3). This is much 
larger than observed with BOLD fMRI where the effect size was approximately 0.4 – 2% on similar saccade-based event-
related tasks22,23. Our results support a growing evidence base that establishes fUSI as a sensitive neuroimaging 
technique for detecting mesoscopic functional activity in a diversity of model organisms, including pigeons, rats, mice, 
nonhuman primates, ferrets, and infant and adult humans15–17,24–31. 

Anterior-posterior gradient 
Several studies have reported a patchiness in direction selectivity with many neighboring neurons tuned to 
approximately the same direction followed by an abrupt transition to a patch of a different preferred direction9,10,32. 
These results match very closely with the results observed in this study where we found clusters within LIP tightly tuned 
to one direction with differently tuned clusters in close proximity within a given plane. The transition between patches 
with different directional tuning is spatially sharp and can occur in just a few voxels, with some transition zones lower 
than 500 µm. These results further emphasize the high spatial resolution of fUSI for functional mapping of neuronal 
activity. These results also closely match a previous study that used fUSI to identify the tonotopic mapping of the 
auditory cortex and inferior colliculus in awake ferrets where the authors found a functional resolution of 100 µm for 
voxel responsiveness and 300 µm for voxel frequency tuning25. 

Our results support previous studies’ evidence of topography within LIP. This fUSI data (Fig. 6) matches two fMRI11,12 and 
two electrophysiology10,33 studies that found an anterior-posterior gradient where anterior LIP encodes for more 
downwards movements and posterior LIP encoded for more upwards movements 

Two studies9,13 found the opposite anterior-posterior gradient where anterior LIP encoded for upwards movements 
while posterior LIP encoded for downward movements. Two possible explanations for these contradictory findings have 
been proposed. Blatt et al. 19908 suggested that there existed separate topographies for two of the main functions of 
LIP. One for attentional processing (anterior LIP – downward attention; posterior LIP – upward attention) and one for 
saccade planning (anterior LIP – upward saccades; posterior LIP – downward saccades). In the second possible 
explanation, Arcaro et al. 201112 reconciled their fMRI data with the two electrophysiology studies by suggesting that 
the differences result solely because of differences in recording site location, i.e., the two electrophysiology papers 
recorded from different overlapping anterior-posterior ranges of LIP. Our combined range of recording agreed with the 
results that Arcaro et al. 2011 showed for visuotopic LIP (LIPvt) and caudal intraparietal cortex (CIP-2). Additionally, our 
results overlap with approximately 4 mm (-4 to -8 mm of EBZ) to the provided stereotactic zero, i.e., ear-bar zero (EBZ), 
in Blatt et al. 19909. Over that range, we observed the same tuning of LIPv for contralateral upward saccades. Taken 
together, our results, using a memory-guided saccade task, disagree with the first interpretation and support the latter 
interpretation that differences in recording site location explain the difference in anterior-posterior gradients.  

Preference for contralateral space 
Previous studies found that LIP responds strongest to contralateral stimuli and movements. At the single neuron level, 
approximately 80-90% of LIP neurons are tuned to contralateral directionsP9,10. Of note, Platt and Glimcher 199834 
reported no bias towards contralateral or ipsilateral in their recorded LIP neurons. At the macroscopic population level, 
the BOLD response in LIP is also almost exclusively contralateral preferring11,12,22. In the present study, we also found 
that LIP has strongly lateralized responses with ~88% of LIP voxels preferred contralateral directions. The reasons for the 
apparent discrepancy with Platt and Glimcher 199834 remain unclear. 
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Differences between dorsal and ventral LIP 
Previous studies found that peripheral targets were represented within the LIPv while foveal and parafoveal targets 
were represented within the LIPd9–12. In our study, we only tested a single eccentricity (20°) and observed activity within 
both LIPd and LIPv. In both monkeys, we observed less LIPd activity in the more posterior planes (< -3.33 mm of EBZ). 
The overall distribution of tuned LIP voxels did not demonstrate a clear separation between LIPd and LIPv. Our study was 
not designed to interrogate the encoding of eccentricity, so future fUSI studies with foveal, parafoveal, and peripheral 
targets will be needed to explore the mesoscopic representation of eccentricity within LIP and PPC.  

Previous studies have found that LIPd was primarily involved in oculomotor planning while LIPv contributed to both 
attentional and oculomotor processes21. Our task was aimed at understanding the oculomotor representation of 
different directions within LIP but was not designed to separate the effects of attention from oculomotor planning. In 
our study, we did not demonstrate a separation in directional representation between LIPd and LIPv with the most 
activity peaking at the boundary between LIPd and LIPv. This suggests that LIPd and LIPv may share a common 
topographic representation rather than having separate duplicated representations of angular direction. 

Directional saccadic activity outside of LIP 
In Monkey P, we additionally observed directionally modulated activity outside of LIP in posterior-ventral MIP, Area 7, 
and medial parietal area (MP). MP has been previously identified as a saccade-related area in single-unit 
electrophysiology and fUSI studies16,35. Monkey L’s recording chamber was located lateral of MP areas. Nevertheless, our 
results in Monkey P, combined with observations in previous studies, support that MP may be an underexplored 
oculomotor planning region. The MP voxels preferred contralateral directions and did not display any clear organization 
of their response fields. 

The posterior-medial MIP also contained directionally tuned activity. Some of this activity (-8 mm of EBZ) is in superficial 
cortical layers, perhaps reflecting inputs to MIP that relay directional information from upstream brain regions. We do 
not know why we see activity within the deeper layers of posterior-ventral MIP. Previous work found the functionally-
defined parietal reach region (PRR), overlapping with the anatomical area MIP, responds predominately to reach 
movements2,4,36. Our task was a memory-guided saccade task with no reach component. Monkey P sat in an open chair 
with his hands and arms free while Monkey L sat in an enclosed chair with his hands and arms confined. Despite Monkey 
P being free to move his arms, we did not observe any arm movements related to the task itself. Future fUSI studies 
where we use a task with intermingled reaches and saccades will be useful in elucidating why we see saccade activity 
within MIP of one monkey. 

More anterior portions of putative Area 7a displayed directionally tuned activity to contralateral movement directions. 
This is consistent with previous literature that found Area 7a neurons have visual receptive fields and display saccade-
related activity37–40. We do not know why only a small region of Area 7A in Monkey P showed directional tuning or why 
we did not observe directionally tuned activity in Area 7a of Monkey L. One possibility is that the neurons within 
individual voxels of Area 7a display high heterogeneity in their response fields such that no consistent tuning appears at 
the mesoscopic population level. 

Stability across time 
We demonstrated that we could decode intended movement direction using a decoder trained on data from a different 
session many months to years apart. This strongly suggests that the directional preference for the LIP subpopulations 
remains stable at the mesoscale. The decoder performed best when the training and testing sessions were close in time. 
We have three possible interpretations for this. First, the representations of direction within subpopulations drift in 
difficult-to-predict ways across time. Under this interpretation, we would expect that the decoders’ predicted 
movement directions would become increasingly random as more time elapses as the tuned voxels used for the model 
decorrelate. A second interpretation is that the subpopulations drift, but they drift at the same rate and in the same 
directions. This would lead to the tuned voxels staying correlated but encode for different directions. Under this 
interpretation, we would expect to see the decoder make increasingly more mistakes, but in a consistent manner. For 
example, the decoder might develop an error bias where instead of predicting the correct class, it consistently predicts a 
different direction in its place. A third interpretation is that the vascular placement relative to our recording plane 
changed across time (consistent with changes in the imaging plane) and that we are decoding from slightly different 
neural populations. Under this interpretation, the decoding errors should increase for neighboring directions because 
the tuned mesoscopic populations observed in this study extend in both anterior-posterior directions and smoothly 
transition to encoding different directions rather than having sharp transitions where neighboring voxels encode for 
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completely different directions. This smooth transition means that the populations used for decoding will still be similar 
to the original populations being measured, consistent with changes in the imaging plane.  

Our data best supports the third interpretation: the recording plane physically shifted over time. Rather than the errors 
becoming increasingly random as time progresses, the confusion matrices still had strong diagonal components, i.e., 
correct predictions, but with higher variance about that diagonal. Additionally, image similarity metrics drift across time, 
confirming that the imaging plane changed despite our best attempts (Fig. S2). Finally, the decoder performance and 
image similarity were positively correlated. This supports the interpretation that the subpopulations are stable across 
time with our decoder performance decreasing because of our imaging plane changing. 

Applications to ultrasonic brain-machine interfaces 
We previously showed that we could decode movement timing (memory/not-memory), direction 
(contralateral/ipsilateral), and effector (hand/eye) simultaneously on a single-trial basis with high accuracy16. We 
recently also demonstrated that we could train monkeys to use a real-time fUSI brain-machine interface (BMI) for up to 
eight directions of eye movements17. Here, we extended these papers’ results in several aspects.  

First, we demonstrated that we could achieve better decoding performance using offline recorded data (50-60% correct) 
than the accuracy reported for the online real-time fUSI-BMI data (~38% correct). One explanation for this performance 
increase is motion correction. In the present study, we used post hoc motion-correction to minimize movement of the 
imaging plane across a session. In the real-time fUSI-BMI study, we did not implement motion correction. In the present 
study, we showed why mesoscopic populations are tolerant to a small amount of motion: similarly tuned voxels are 
more often spatially contiguous. However, even modest amounts of motion would alter the information available to the 
decoder, decreasing performance. One future method that may be well-suited to this problem is convolutional neural 
networks that can utilize local structure in images to maintain high performance rather than our existing decoder 
algorithms that assume features do not move across time. 

Second, we demonstrated that we could decode above chance level with a static decoder model even after several 
years. In Griggs and Norman et al. 202417, we collected data over 79 days, far fewer than the 900 days reported here. 
This suggests that future ultrasonic BMIs can constantly update an existing model rather than needing to be recalibrated 
daily. This is one current advantage of imaging-based BMIs over intracortical electrode-based BMIs. Intracortical 
electrode-based BMIs typically require frequent calibration or retraining due to their inability to record from the same 
neurons across multiple days41. By simply combining imaging-based BMIs with image alignment (2D plane and 
potentially 3D volume) to a previous session’s field of view, we can stabilize BMIs over long periods of time. 

Future studies 
Record along intraparietal sulcus axis – In our study and most of the previous studies of LIP response fields, the 
topography changed along an anterior-posterior axis. Future studies could use 3D fUSI or align a 2D fUSI imaging plane 
along the intraparietal sulcus to acquire a larger anterior-posterior slice of LIP. This was not possible in the current 
animals due to the size of the ultrasound transducer and how our chamber was positioned off-axis relative to the 
intraparietal sulcus. This future study could significantly increase the longitudinal resolution compared to the current 
study and simultaneously improve effect sizes thanks to the ability to record anterior-posterior populations 
synchronously (in contrast to the current study that reconstructed these data over many sessions).  

Eccentricity axis – Many studies have found a topography along an eccentricity axis with foveal and parafoveal targets 
being anterior of the peripheral targets representation9–13. In the current study, we presented our stimuli at a single 
eccentricity. Future studies could compare the representation of foveal, parafoveal, and peripheral targets within the 
LIP, potentially improving the field’s understanding of how angular direction and eccentricity are spatially organized. 
Exploring foveal representation of saccades may also require a different experimental task than used in this study due to 
the difficulties associated with tracking and measuring small saccades42. 

Spatial autocorrelation of fUSI voxels – Each voxel (~100 μm x ~100 μm x ~400 μm) contains approximately 65 neurons 
and 130 glia43, whereas each 1-1.5 mm3 fMRI voxel contains approximately 16,000-24,000 neurons and 32,000-48,000 
glia. This suggests that fUSI can detect very local activity within neural circuits, including from within different cortical 
layers. However, fUSI measures changes in CBV and neurovascular coupling is complex44–46. Although every neuron 
within the brain is positioned within 15 μm of a blood vessel47, the contributions of different cell types are not 
sufficiently well understood to disentangle their contribution to the CBV signal. Additionally, neighboring voxels are 
supplied oxygen and nutrients by the same neurovasculature. This could contribute to an unknown extent to spatial 
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autocorrelation of fUSI encoding (Fig. S4), confounding our ability to precisely identify the size and spatial separation of 
tuned populations. Motion of our imaging plane and spatial smoothing further increases this spatial autocorrelation. 
There have been a variety of methods proposed for fMRI to handle the statistical consequences of spatial 
autocorrelation and calculate accurate statistical thresholds for cluster-wise inference48–51. However, to the best of our 
knowledge, no methods have been devised to separate the various contributors to the spatial autocorrelation, including 
correlated neuronal activity. Future experiments are required to disambiguate the contribution of correlated neurons 
versus other contributors to the size of neurovascular patches with similar tuning. Each voxel most likely contains 
neurons with a mixture of response fields with a bias towards specific response fields. Simultaneously recording fUSI 
signals and single neurons will be crucial for understanding the response properties within individual voxels and patches 
of similarly tuned voxels. 

Directional tuning of cortical layers – Ultra-high field fMRI has enabled sub-millimeter voxel resolution and allowed 
researchers to study cortical layer-specific activity52–54, especially with CBV-based fMRI55,56. Similar laminar analyses are 
possible with fUSI because it measures CBV and has higher spatiotemporal resolution and sensitivity than UHF fMRI. To 
date, only one fUSI study has begun to explore this possibility. Blaize et al. 202057 inferred cortical layer based upon 
cortical depth from the sulcus and found layer-specific ocular dominance within deep visual cortex. In the present study, 
we observed broad activity within LIP that did not appear to respect any laminar boundaries within the cortex. In both 
monkeys, we detected some directionally specific activity within the shallower layers of MIP (Fig. 3D, 4C, 4F, 6A). This 
may reflect activity within superficial input layers. We could qualitatively estimate the boundary between white matter 
and grey matter based upon the amount of organized mesovasculature observed in our vascular maps. However, the 
thickness of cortex varied within and across imaging planes, which prevented reliable estimates of cell layer based upon 
cortical depth. Future studies will be needed to better understand how to define cortical layers with fUSI, including 
studies to identify layer-specific properties detectable by ultrasound. 

Conclusion 
Here, we used fUSI to demonstrate that the posterior parietal cortex (PPC) contains mesoscopic populations of neurons 
tuned to different movement directions. This organization changed along an anterior-posterior gradient and remained 
stable across many months to years. These results unify previous findings that examined the topographic organization of 
LIP at the macroscopic (fMRI) and microscopic (electrophysiology) levels. In one monkey, we additionally found robust 
saccade-related activity within the medial parietal (MP) cortex, a parietal area that warrants further investigation. Using 
the methods established here for tracking the same populations across many months to years, it will be possible to 
apply brain-machine interfaces and other technologies that are advantaged by stable recordings across time. 
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METHODS 
Experimental model and subject details 
All training, recording, surgical, and animal care procedures were approved by the California Institute of Technology 
Institutional Animal Care and Use Committee and complied with the Public Health Service Policy on the Humane Care 
and Use of Laboratory Animals. We worked with two rhesus macaque monkeys (Macaca mulatta; 14-years old, male, 
14-17 kg). Monkey L participated in two previous fUSI experiments16,17. Monkey P participated in one previous fUSI 
experiment17. 

General 
Animal preparation and implant 
We implanted a titanium headpost and custom square recording chamber on each monkey’s skull under general 
anesthesia and sterile surgical conditions. We printed or machined a 24 x 24 mm (inner dimension) chamber using Onyx 
filament (Markforged) for Monkey L and a similar chamber made of PEEK for Monkey P. We placed the recording 
chamber over a craniectomy centered above the left intraparietal sulcus. 

Behavioral setup and task 
Each monkey sat head-fixed in custom-designed primate chairs facing an LCD screen ~30 cm away. We used a custom 
Python 2.7 software based upon PsychoPy58 to control the behavioral task and visual stimuli. We tracked their left eye 
position using an infrared eyetracker at 500 Hz (EyeLink 1000, Ottawa, Canada). Eye position was recorded 
simultaneously with stimulus information for offline analysis. 

Monkeys performed a memory-guided saccade task (Fig. 2A) where they fixated on a center dot (fixation state), 
maintained fixation while a peripheral cue was flashed for 400 ms in one of eight locations (20° eccentricity, equally 
spaced around a circle), continued to maintain fixation on the center dot (memory state), and finally made a saccade to 
the remembered cue location (movement state). If they correctly made a saccade to the cued location, the peripheral 
cue was redisplayed and the monkey maintained fixation on the peripheral target until the liquid reward (30% juice; 0.35 
mL monkey L and 0.75 mL monkey P) was delivered. To avoid the monkeys predicting state transitions, we used variable 
durations sampled from a uniform distribution for each task state. In Monkey L, the fixation and memory phase were 4 ± 
0.25 seconds, the movement phase was 0.75 ± 0.15 seconds, and the intertrial interval (ITI) was 5 ± 1 seconds. For 
Monkey P, the fixation and memory phase were 5 ± 1 seconds, the movement phase was 1 ± 0.5 seconds, and the ITI 
was 8 ± 2 seconds. 

Functional ultrasound imaging 
We used a programmable high-framerate ultrasound scanner (Vantage 256; Verasonics, Kirkland, WA) to drive the 
ultrasound transducer and collect pulse echo radiofrequency data. We used a custom plane-wave imaging sequence to 
acquire the 1 Hz Power Doppler images. We used a pulse repetition frequency of 7500 Hz with 5 evenly spaced tilted 
angles (-6° to 6°) with 3 accumulations to create one high-contrast compounded ultrasound image. We acquired the 
high-contrast compound images at 500 Hz and saved the images for offline construction of Power Doppler images. We 
constructed each Power Doppler image using 250 compound images acquired over 0.5 seconds. To separate the blood 
echoes from background tissue motion, we used an SVD clutter filter59. For more details on the functional ultrasound 
imaging sequence and Power Doppler image formation, please see Norman and Maresca et al. 202116 and Macé et al. 
201360. 

We used a 15.6 MHz ultrasound transducer (128-element miniaturized linear array probe, 100 μm pitch, Vermon, 
France). This transducer and imaging sequence provided us with a 12.8 mm (width) and 13-20 mm (height) field of view. 
The in-plane resolution was approximately 100 μm x 100 μm with a plane thickness of ~400 μm. During each recording 
session, we placed the ultrasound transducer on the dura with sterile ultrasound gel. We held the transducer using a 3D-
printed slotted chamber plug that minimized motion of the transducer relative to the brain. The slots were spaced 1.66 
mm apart. This slotted chamber plug allowed us to acquire specific imaging planes across sessions. To help with later 
offline data concatenation, we acquired vascular maps using a single Power Doppler image and adjusted the transducer 
until the acquired vascular map closely matched a previously acquired vascular image for that chamber slot. 

Across session alignment and concatenation 
We concatenated data across multiple sessions for each imaging plane. We first performed a semi-automated intensity-
based rigid-body registration to align the vascular anatomy between sessions. As described above, during the 
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acquisition, we minimized out-of-plane movement between sessions by matching each session’s imaging plane to a 
previously acquired template image for each chamber slot. See Griggs and Norman et al. 202417 for more details. 

3D visualization 
We used MATLAB to export the vascular images to NIFTI format. We used Napari61, the `napari-nifti` plugin62, and 
custom Python code to visualize the 3D reconstruction and save as images. The images were combined to form a movie 
using Da Vinci Resolve 17.4.4 Build 7 (Blackmagic Design). 

Quantification and statistical analysis 
Unless reported otherwise, summary statistics are reported as mean ± SEM. 

General linear model (GLM) 
We applied several pre-processing steps before creating the GLM to explain the data. We first applied a Gaussian spatial 
filter (FWHM – 100 μm). We then applied a pixelwise high-pass temporal filter (1/128 Hz) to remove low-frequency drift. 
We finally used grand mean scaling to scale each voxel’s intensity to a common scale63,64. To build the general linear 
model, we convolved the regressors of interest with a hemodynamic response function (HRF). We used a single gamma 
function with a time constant (τ) of 1 second, a pure delay (δ) of 1 second, and a phase delay (n) of 3 seconds based 
upon a previous monkey event-related fMRI study22. The regressors of interest were fixation period, memory period, 
movement period, and reward delivery. For the memory and movement periods, we used separate regressors for each 
direction. We then fit the GLM model using the convolved regressors and scaled fUSI data. We used an F-test to identify 
voxels that had a statistically significant difference to the eight directions during the memory period. 

Multiple comparison correction 
For all voxel-wise p-values used and reported, we used false-discovery rate correction (FDR) to correct for the 
simultaneous multiple comparisons. This was implemented using MATLAB’s `mafdr` function. 

Preferred direction 
We used a center-of-mass approach to find the preferred tuning of each voxel. For each voxel, we first calculated the 
Cohen’s d measure of effect size by comparing the response at the end of the memory period to the baseline (-1 to 1 
seconds relative to cue onset). This gave us a standardized measure of response strength for each direction. We then 
scaled the peak response at each voxel to be 1. We then found the centroid for each voxel, which provided both a 
direction and magnitude. The direction represents the peak tuning direction while the magnitude represents the 
strength of that tuning. A value close to zero means no tuning while a value close to 1 means highly tuned to a specific 
direction. This method minimizes assumptions about shape of the response field, such as whether it is Gaussian. We 
then smoothed the resulting statistical map using a pillbox spatial filter (1-voxel radius). 

Within-session decoding analysis 
Decoding intended movement direction on a single trial basis had five steps: 1) aligning the fUSI data and behavioral 
data, 2) preprocessing, 3) selecting data to analyze, 4) dimensionality reduction and class separation, and 5) cross-
validation. First, we created the behavioral labels by temporally aligning the fUS data with the behavioral data. We could 
then label each fUSI timepoint with its corresponding task state and movement direction. 

Second, we preprocessed the data by applying several operations. The first operation was motion correction. We used 
NoRMCorre to perform rigid registration between all the Power Doppler images in a session 65. We then applied 
temporal detrending (50 timepoints) and a pillbox spatial filter (2-voxel radius) to each Power Doppler image.  

Third, we would then select what spatial and temporal portions of the data to use in the decoder model. We always 
used the entire image where each pixel is a single feature. We used a dynamic time window. At each timepoint before 
the cue, we used all timepoints since the start of the trial. For example, to test our ability to decode at 3 seconds after 
the trial start, we used the fUS images at 0, 1, 2, and 3 seconds. At each timepoint after the cue, we used all previous 
timepoints after the cue in the trial. For example, to test our ability to decode at 2 seconds after cue onset, we 
concatenated the data from 0, 1, and 2 seconds after the cue. We treated these timepoints as additional features in the 
decoder model. In other words, the input to our decoder model had N*T features, where N is the number of pixels in a 
single Power Doppler image and T is the number of timepoints. 

Fourth, we split the data into train and test folds according to a leave-one-out or 10-fold cross-validation scheme. For 
the test sets, we stripped the behavioral labels. We then scaled the train and test splits by applying a z-score operation 
fit to the train data. We used the entire image for our features, i.e., each voxel’s activity was a single feature. To train 
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the linear decoder on the training data, we used principal component analysis (PCA) for dimensionality reduction and 
linear discriminant analysis (LDA) for class separation. For the PCA, we kept 95% of the variance. For the LDA, we used 
MATLAB’s `fitcdiscr` function with default parameters. We used a multicoder approach where the horizontal (left, 
center, or right) and vertical components (down, center, or up) were separately predicted and combined to form the 
final prediction. As a result of this separate decoding of horizontal and vertical movement components, “center” 
predictions are possible (horizontal — center and vertical — center) despite this not being one of the eight possible 
peripheral target locations. We then calculated the percent correct and absolute angular error for each sample in the 
test data.  

Fifth, we then repeated the model training and testing for each consecutive fold of data. We finally found the mean 
accuracy metrics across all the folds, i.e., mean accuracy and mean angular error. To correct for testing the performance 
at every trial timepoint, we used a Bonferroni correction. 

We used a 1-sided binomial test to calculate the p-values associated with the percent correct results and used a 
permutation test with 100,000 replicates to calculate the p-values associated with the angular error results. For the 
permutation test, each replicate was created by sequentially drawing X directional guesses from a uniform distribution 
of the eight possible directions, where X is the number of trials in the session. We then calculated the 1-sided p-value of 
each of our results by finding how many of the replicates were less than our observed mean angular error. 

See Norman and Maresca et al. 202116 and Griggs and Norman et al. 202417 for more details on these methods. 

Across-session decoding analysis 
To test whether we could use a decoder trained on a separate session’s data to decode movement intent in a different 
session, we applied the same steps as for the within-session decoding analysis with two differences. First, the training 
set was all the data from a specific session and the testing set was all the data from a different specific session. Second, 
to assess performance within the same train and test session, we used 10-fold cross-validation instead of leave-one-out 
cross-validation. The later sessions’ data (after March 25, 2022) are used in a previous publication and were acquired at 
a 2 Hz imaging rate with slightly different acquisition parameters. See Griggs and Norman et al. 202417 for more details 
about the acquisition of these data. For the across-session decoding analysis, we down-sampled this 2 Hz data to 1 Hz to 
allow us to easily compare the same trial timepoints between the two sets of data. 

Image similarity 
We compared the pairwise similarity of vascular images from different sessions by using the complex wavelet structural 
similarity index measure (CW-SSIM). The CW-SSIM quantifies the similarity of two images, where 0 is dissimilar and 1 is 
the same image20. We used the CW-SSIM over other forms of SSIM because it is more flexible in incorporating variations 
in image resolution, luminance change, contrast change, rotations, and translations. We used an implementation freely 
available from the MATLAB Central File Exchange66 with 4 levels and 16 orientations. 

Searchlight analysis 
We defined a circular region of interest (ROI) and, using only the pixels within the ROI, we performed the within-session 
decoding analysis using 10-fold cross-validation. We assigned that ROI’s percent correct and angular error metrics to the 
center voxel. We then repeated this across the entire image, such that each image pixel is the center of one ROI. To 
visualize the results, we overlaid the performance metric (angular error or percent correct) onto a vascular map and 
kept up to the 10% most significant voxels. As part of this searchlight analysis, we ignored activity within the sulcal fold 
or activity on the other side of the sulcal fold. To do this, we defined the boundaries of the sulcal folds using a custom 
GUI in MATLAB and only used voxels on the same side of the sulcal fold as the searchlight center. This is similar in 
principle to the cortical surface-based searchlight decoding developed for fMRI67. 

Spatial autocorrelation 
For every pixel in the image, we examined voxels at different distances from the seed voxel. For each distance tested, 
we identified voxels that were between [max(0, i-0.1) mm, i mm] away. We then performed Pearson linear correlation 
between these identified voxels and the seed voxel. We then assigned the mean correlation to the seed voxel. To 
calculate the mean correlation for each distance, we took the mean and standard deviation across the entire image.  
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